

hosted by the Swedish Life Cycle Center & the project Swedish platform for the life cycle perspective

Webinar Improved communication of LCA results

2020-03-05

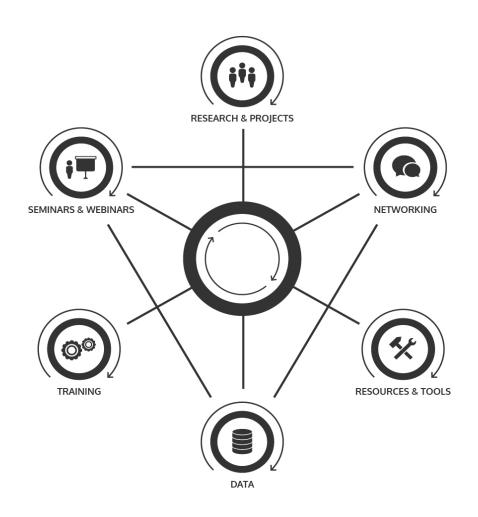
Frida Røyne, researcher at RISE

Webinar guidelines & information

- If you do not see the presentations, the presentations will be found here https://www.lifecyclecenter.se/events/
- The webinar will be recorded
- The webinar starts with presentations save your questions to the end
- You are muted as default and when it is time for questions we will be able to unmute you if you have a question
- Presentations will be sent to all participants after the webinar

We aim for credible & applied life cycle thinking globally!

Nouryon



Swedish platform for the life cycle perspective

Two- day course in Applied Life Cycle Thinking 21-22 april, Göteborg, Chalmers

The life cycle perspective, understanding the environmental impacts of a product or service throughout the value chain, is gaining increased importance in business as well as in public sector and authorities. In this two-day course you will get a deeper understanding on how to apply life cycle thinking in your organization, through real cases and proven methods.

Price: 11500 SEK ex. VAT

Register: https://www.lifecyclecenter.se/events/save-the-date-

Sign up to our newsletter

I want to receive newsletters and invitations from Swedish Life Cycle Center to my inbox. I agree on the terms and conditions connected to the use of my personal data. I can unsubscribe at any time. Read the terms

Your email

Your name

Your organization

Sign up

lifecyclecenter@chalmers.se

www.lifecyclecenter.se

Twitter: @lifecyclecenter

LinkedIn: Swedish Life Cycle Center

And sign up for our newsletter!

hosted by the Swedish Life Cycle Center & the project Swedish platform for the life cycle perspective

Webinar Improved communication of LCA results

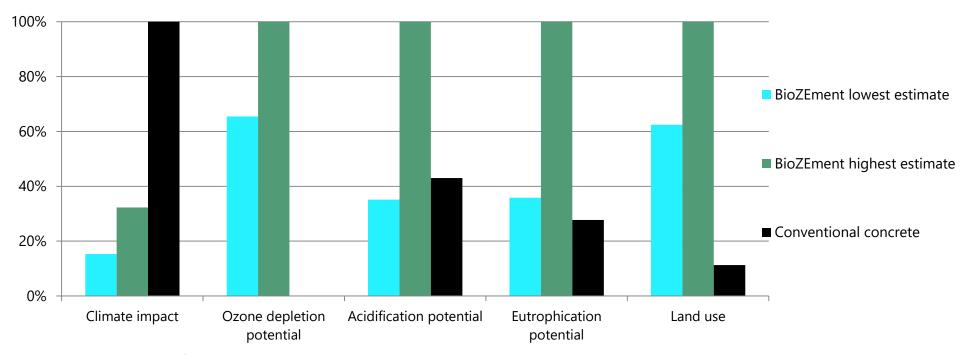
2020-03-05

Frida Røyne, researcher at RISE

Improved communication of LCA results

Frida Røyne

RISE - Research Institutes of Sweden

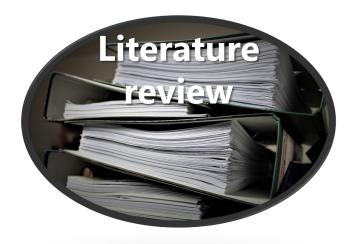

Webinar March 5th, 2020

About the project

- October 2018 May 2019
- Team: Michael Martin (IVL) and Louise Quistgaard (RISE)
- Financed by Åforsk
- Which type of communication?
 - The physical dimension: Which platforms the results are distributed through
 - The social dimension: How the results are distributed
 - The expressive dimension: How the results are expressed and compared quantitatively, qualitatively and visually

How it all began...

Comparison of innovative (BioZEment) and conventional concrete

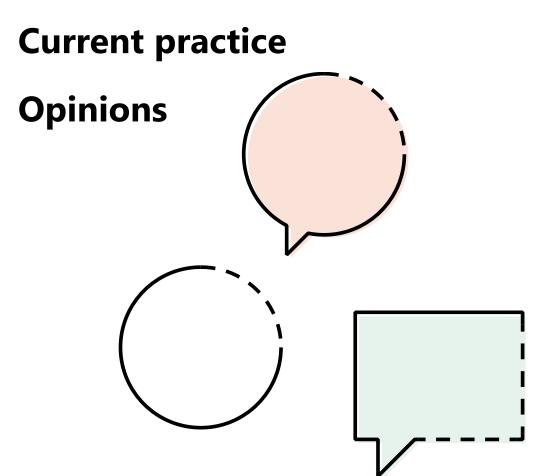


What is good communication?

Method

Researchers Practitioners

Commissioners Decision makers



Communicators

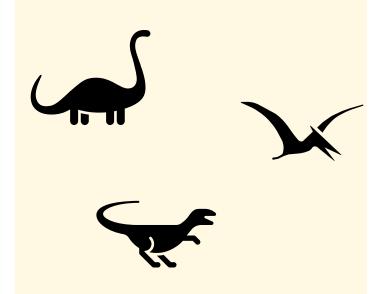
Questions addressed

- Expression of scale and severity
- Formulation of goal/aim
- Numbers versus conclusions
- Mentioning of audience
- Tailoring to media and audience
- Visual presentation
- Need for LCA expertise
- Future needs

Result 1 Stating goal, intended audience and conclusions

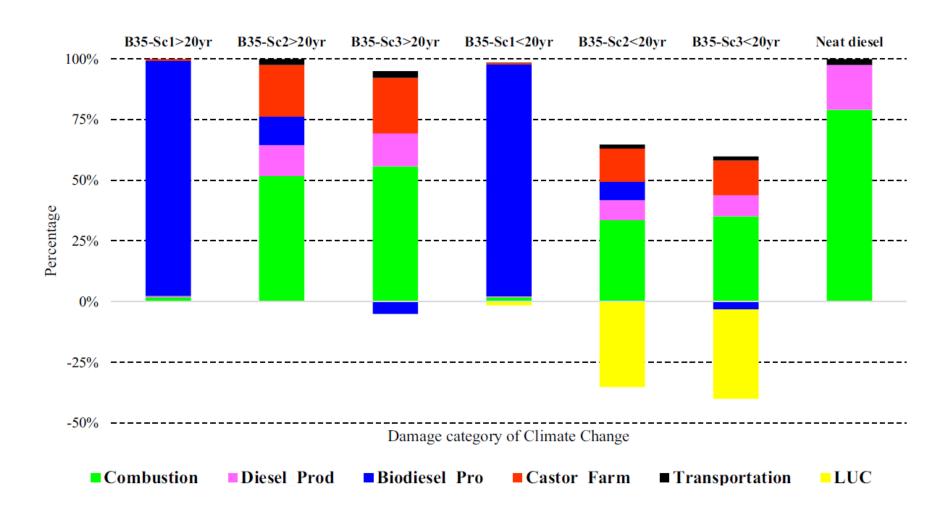
Preferences

Current practice

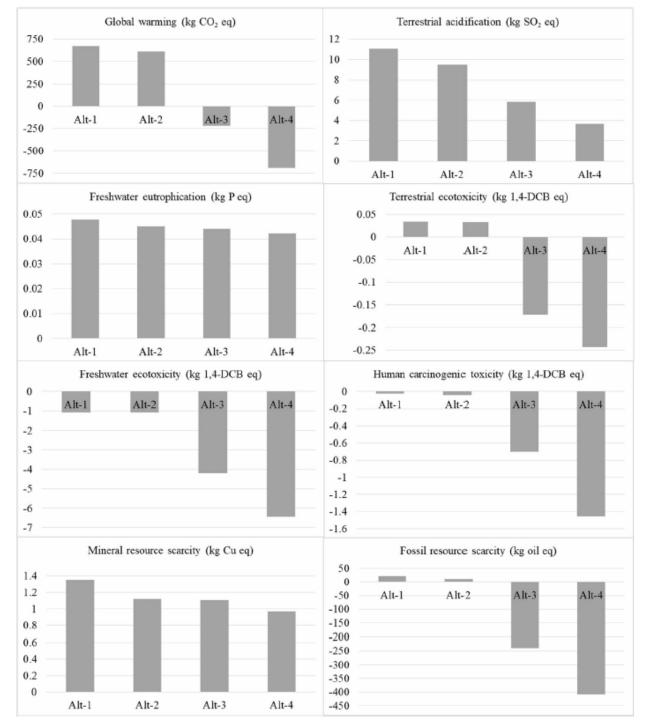

Is it much? Is it significant??

Result 2 Expressing scale and severity

- Most common to use benchmark
 - LCA on other products/technologies
 - The different life cycle phases
 - Most common to use several
- Normalization and weighting generally avoided
- Absolute LCA suggested but juvenile
- Most positive to the least complex



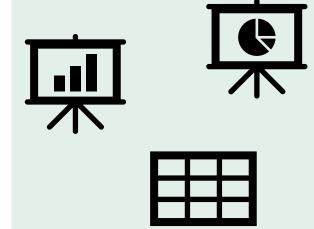
"Diagrams are helpful to most people. Tables are interesting for the nerds"


Comment from the survey

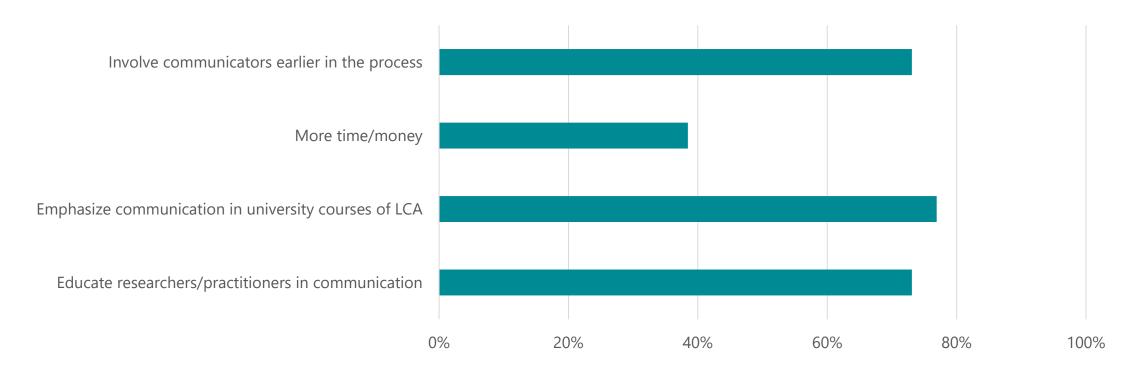
Example from the survey

Example from the survey

Example from the survey


Table 3. ReCiPe midpoint results (Characterisation) attributed to the production of 1 kg microalgae-biodiesel.

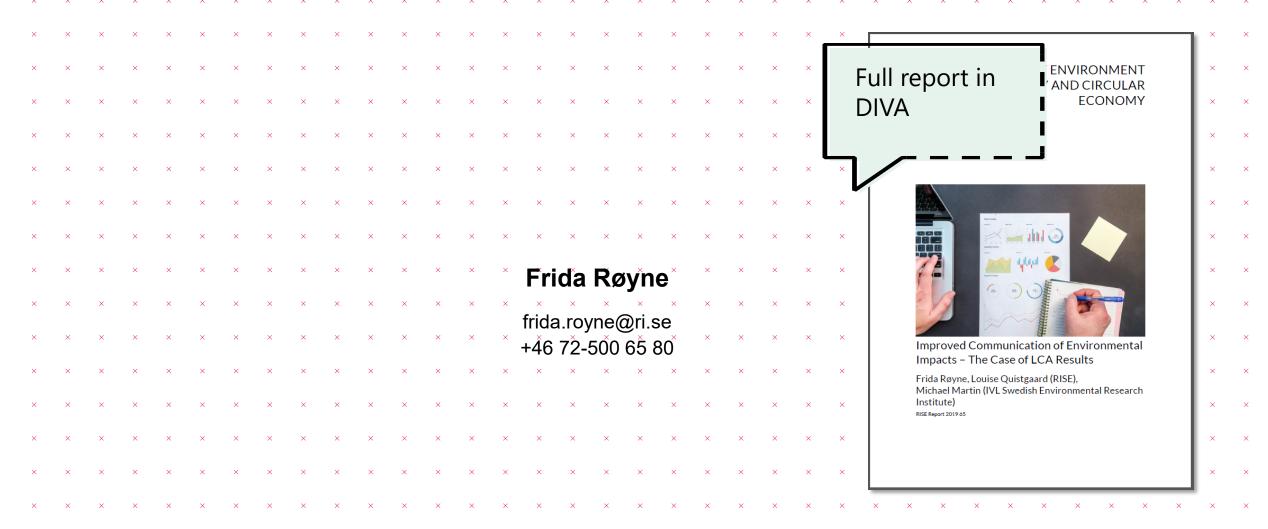
3						
Impact category	Unit	Spirulina platensis open (kg ⁻¹ biodiesel)	Nannochloropsis sp. open (kg ⁻¹ biodiesel)	Spirulina platensis closed (kg ⁻¹ biodiesel)	Nannochloropsis sp. closed (kg ⁻¹ biodiesel)	Diesel (0.867 kg ⁻¹ diesel)
Climate change	kg CO₂ eq	2.644E+01	1.931E+01	1.330E+02	9.947E+01	5.450E-01
Ozone depletion	kg CFC-11 eq	1.260E-06	9.450E-07	6.600E-06	4.960E-06	4.460E-06
Terrestrial acidification	kg SO₂ eq	1.367E-01	1.015E-01	6.946E-01	5.212E-01	3.706E-03
Freshwater eutrophication	kg P eq	6.293E-02	4.455E-02	3.238E-01	2.408E-01	3.670E-06
Marine eutrophication	kg N eq	1.138E-02	7.788E-03	7.332E-02	5.438E-02	3.030E-04
Human toxicity	kg 1,4-DB eq	4.322E+01	3.075E+01	2.224E+02	1.655E+02	8.418E-02
Photochemical oxidant formation	kg NMVOC	3.685E-02	3.291E-02	2.311E-01	1.790E-01	1.010E-02
Particulate matter formation	kg PM10 eq	4.742E-02	3.585E-02	2.535E-01	1.909E-01	1.210E-03
Terrestrial ecotoxicity	kg 1,4-DB eq	-2.450E-03	-2.890E-03	7.585E-03	4.651E-03	4.930E-05
Freshwater ecotoxicity	kg 1,4-DB eq	1.214E+00	8.677E-01	5.889E+00	4.384E+00	8.590E-04
Marine ecotoxicity	kg 1,4-DB eq	1.156E+00	8.252E-01	5.652E+00	4.206E+00	9.730E-04
lonising radiation	kBq U235 eq	1.405E+00	1.152E+00	8.048E+00	6.149E+00	8.265E-02
Agricultural land occupation	m²a	-3.898E+01	-1.151E+01	-3.845E+01	-1.111E+01	-
Urban land occupation	m²a	-2.687E-01	-4.481E-02	9.322E-03	1.643E-01	_
Natural land transformation	m ²	-7.400E-04	6.450E-04	6.965E-03	6.437E-03	-
Water depletion	m ³	8.320E+01	6.069E+01	4.357E+02	3.259E+02	3.993E-01
Metal depletion	kg Fe eq	2.528E-01	2.371E-01	1.817E+00	1.410E+00	1.264E-02
Fossil depletion	kg oil eq	9.674E+00	7.041E+00	4.520E+01	3.377E+01	1.038E+00


Result 3 Opinions on visual presentations

- **Tables** poorer understanding, good data source
- Negative values and different time scales require good explanations
- Colors appealing but practical issues
- Abbreviations necessary but should be limited
- Multiple charts in one figure to use with caution
- Multiple dimensions complexity decreases understanding

Result 4 How to improve communication

Why don't I understand
this article?
I must be too stupid...



Conclusions

- Most important: attention
- Focus on purpose and message
- Complexity should not overrule understanding
- Vast opportunities for improvement and further research

Illustrations from www.pexels.com

QUESTIONS?

THANK YOU

lifecyclecenter@chalmers.se

www.lifecyclecenter.se

Twitter: @lifecyclecenter

LinkedIn: Swedish Life Cycle Center

And sign up for newsletter!

