

# Webinar Monetary valuation of environmental impacts – models and data

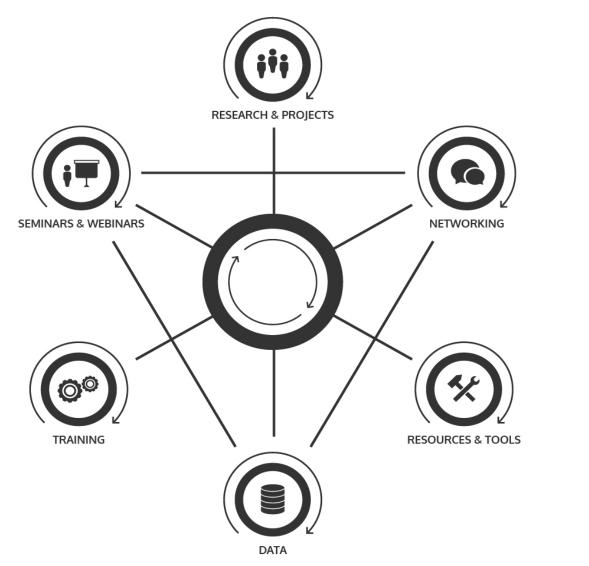
2020-04-16

with Bengt Steen, professor emeritus at Chalmers University of Technology hosted by the Swedish Life Cycle Center & the project Swedish platform for the life cycle perspective, in collaboration with working group Get the prices right



## Webinar guidelines & information

- "Questions and Discussion" after the presentation
- Presentations available at https://www.lifecyclecenter.se/events/
- The webinar will be recorded
- You are muted as default and when it is time for questions we will be able to unmute you if you have a question
- Presentations will be sent to all participants after the webinar




#### SWEDISH LIFE CYCLE CENTER

We aim for credible & applied life cycle thinking globally!

Swedish Life Cycle Center & Swedish platform for the life cycle perspective I www.lifecyclecenter.se





#### Swedish platform for the life cycle perspective



#### Working group Get the prices right

Swedish Life Cycle Center I Svensk plattform för livscykelperspektivet I www.lifecyclecenter.se

#### Sign up to our newsletter

I want to receive newsletters and invitations from Swedish Life Cycle Center to my inbox. I agree on the terms and conditions connected to the use of my personal data. I can unsubscribe at any time. <u>Read the terms</u>



🖉 Your name

Your organization



#### lifecyclecenter@chalmers.se

www.lifecyclecenter.se Twitter: @lifecyclecenter LinkedIn: Swedish Life Cycle Center And sign up for our newsletter!





# Webinar Monetary valuation of environmental impacts – models and data

2020-04-16

with Bengt Steen, professor emeritus at Chalmers University of Technology hosted by the Swedish Life Cycle Center & the project Swedish platform for the life cycle perspective, in collaboration with working group Get the prices right



# Monetary Valuation of Environmental Impacts– Models and Data

Bengt Steen, Chalmers University of Technology

#### Outline

- Why monetary valuation?
- The ISO 14008 standard
- Scoping: Which impacts to value, whose values etc.
- The EPS system an overview
- Monetary valuation: models and data
- Future developments

# Why value environmental impacts in monetary terms?

- In sustainable development, tradeoffs are necessary
- Sustainability is basically about having time to satisfy human needs. Time is money. Money is time.
- The time (or money) needed to satisfy human needs depends very much on the richness of the environment
- The monetary values of environmental impacts is consequently a good sustainability indicator for human activities



17 SDGs, 169 targets

## Harmonization of monetary valuation

https://www.iso.org/standard/43243.html

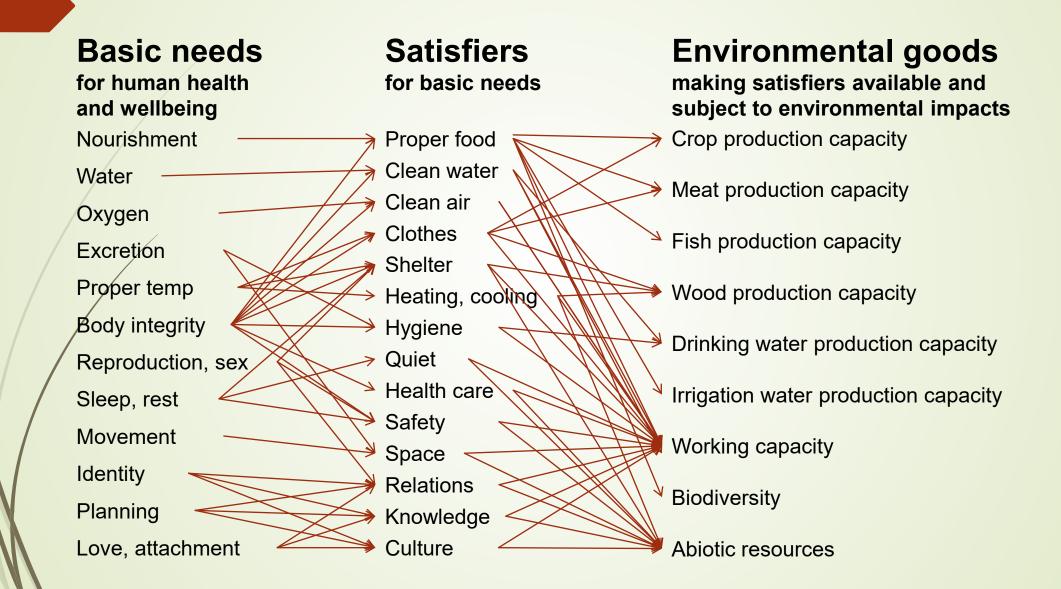
#### INTERNATIONAL STANDARD

ISO 14008

First edition 2019-03

# Monetary valuation of environmental impacts and related environmental aspects

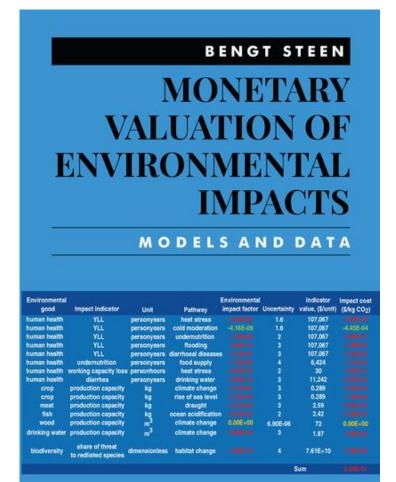
Évaluation monétaire des impacts environnementaux et des aspects environnementaux associés


#### ISO 14008

- Introduction
- 1 Scope
- 2 Normative references
- 3 Terms and definitions
- 4 Principles
- 5 Planning a monetary valuation
  - 5.1 General.
  - 5.2 Goal of the valuation and its intended audience
  - 5.3 Specification of the environmental impact or aspect
  - 5.4 People whose preferences and perspectives are considered
  - 5.5 Elements of the Total Economic Value captured
  - 5.6 Monetary valuation method
- 6 Requirements and procedures for monetary valuation
- 7 Linking monetary values of environmental impacts to related environmental aspects
- 8 Quality check
- 9 Reporting

#### Central terms in ISO 14008

- Good: natural resource (<u>3.1.5</u>), ecosystem service (<u>3.2.11</u>), product or service, marketed or not, that satisfies human wants or needs
- Environmental good is a good supplied by the environment. May also be negative as in the case of impacts on human health.
- Environmental impact: change to the environment (<u>3.1.1</u>), whether adverse or beneficial, wholly or partially resulting from an organization's environmental aspects (<u>3.1.4</u>)
- Environmental impact indicator is a measure of an environmental impact, and in this context, subject to monetary valuation
- Impact pathway: a mechanism by which an elementary flow influence an environmentl impact indicator


#### Scoping: Which environmental goods should be included?



## **Environmental Priority System, EPS**

|   |                             |                       | MV for materials and              |        |
|---|-----------------------------|-----------------------|-----------------------------------|--------|
|   |                             | MV for emissions      | processes                         |        |
|   | Monetary value (MV)         | •Carbon dioxide       | •Manufacture of PE                |        |
|   | of impacts on env.<br>goods | •Carbon<br>monoxide   | •Material recycling of PE         |        |
|   | •Crop                       |                       |                                   |        |
|   | •Wood                       | Nitrogen oxides       | Incineration of PE                |        |
|   | •Meat                       | • Sulphur oziplasonme |                                   |        |
|   | • Fish                      | •VOC eng              | A land fill of PE                 | 0      |
|   | •Life expectancy            | et tc.                | • W for products                  | 74 MB  |
| , | Et Conomisto                | onmental<br>stists    | <ul> <li>Manufacturing</li> </ul> | .67 .6 |
|   | SCI                         | entists               | •Use                              |        |
|   |                             |                       | • Waste management                |        |
|   |                             |                       |                                   |        |

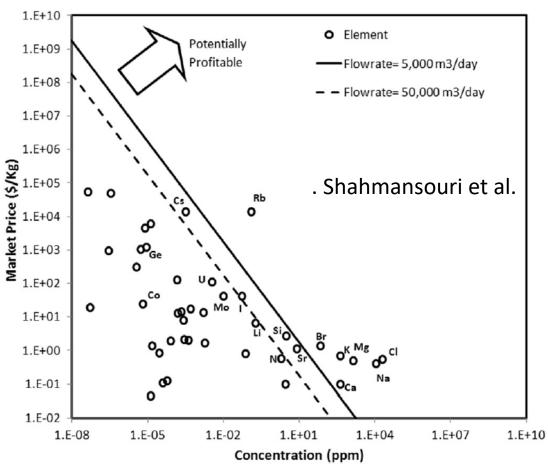
#### Adaptation of EPS to ISO 14008





## Choice of indicators for environmental impacts and their monetary values

|   | Environmental good        | Environmental impact indicator                  | Monetary valuation method     |
|---|---------------------------|-------------------------------------------------|-------------------------------|
|   | Crop production capacity  | Kg decrease of crop prod. cap.                  | Market value                  |
|   | Meat production capacity  | Kg decrease of meat prod. cap.                  | Market value                  |
|   | Fish production capacity  | Kg decrease of fish prod. cap.                  | Market value                  |
|   | Wood production capacity  | m3 decrease of wood prod. cap.                  | Market value                  |
|   | Drinking water prod. cap. | m3 decrease of drinking water prod. cap.        | Market value                  |
| / | Working capacity          | Increased DALY (Disability adjusted life years) | Market value of OECD salaries |
|   | Biodiversity              | Share of current threat to redlisted species    | Prevention cost               |
|   | Abiotic resources         | Kg decrease of resource                         | Restauration cost             |


#### Monetary values of envrionmental impact indicators

| Environmental indicator                      | Unit           | Monetary impact value, (\$) |             |  |
|----------------------------------------------|----------------|-----------------------------|-------------|--|
|                                              |                | Best estimate               | Uncertainty |  |
| Production capacity of crops                 | kg             | 0.289                       | 1.24        |  |
| Production capacity for meat                 | kg             | 2.59                        | 1.32        |  |
| Production capacity for fish                 | kg             | 2.42                        | 1.30        |  |
| Production capacity for wood                 | m <sup>3</sup> | 72                          | 1.2         |  |
| Share of current threat to redlisted species | Dimensionless  | 7.61E+10                    | 1.5         |  |
| Production capacity for drinking water       | m <sup>3</sup> | 1.87                        | 2.26        |  |
| Coal resources                               | kg             | 0.284                       | 1.3         |  |
| Lignite resources                            | kg             | 0.084                       | 1.2         |  |
| Oil resources                                | kg             | 0.8                         | 1.3         |  |
| Natural gas resources                        | kg             | 0.5                         | 1.3         |  |
| Metal resources                              |                |                             |             |  |
| Aluminum                                     | kg metal       | 0.175                       | 1.3         |  |
| Iron                                         | kg metal       | 1.1                         | 1.6         |  |
| Silver                                       | kg metal       | 115200                      | 2           |  |
| Arsenic                                      | kg metal       | 3840                        | 2           |  |

#### Monetary values of trace metal ore resources

| Metal name | Abundance in<br>crust (g/ton) | Cost for ore<br>substitution (\$/kg<br>Metal) | Metal name        | Abundance in<br>crust (g/ton) | Cost for ore<br>substitution<br>(\$/kg Metal) |
|------------|-------------------------------|-----------------------------------------------|-------------------|-------------------------------|-----------------------------------------------|
| Silver     | 0.05                          | -                                             | Neodymium         | 26                            | 222                                           |
| Arsenic    | 1.5                           |                                               | Nickel            | 44                            | 136                                           |
| Gold       | 0.0018                        | 3200000                                       | Osmium            | 0.00005                       | 115200000                                     |
| Bismuth    | 0.13                          | 44308                                         | Lead              | 17                            | 339                                           |
| Cadmium    | 0.098                         | 58776                                         | Palladium         | 0.00053                       | 10867925                                      |
| Cerium     | 64                            | 90                                            | Praseodymium      | 7.1                           | 811                                           |
| Cobolt     | 17                            | -                                             | Platinum          | 0.0006                        | 960000                                        |
| Chromium   | 83                            | 43                                            | Rhenium           | 0.0004                        | 14400000                                      |
| Cesium     | 4.6                           |                                               | Rhodium           | 0.000018                      | 32000000                                      |
| Copper     | 25                            |                                               | Ruthenium         | 0.00003                       | 192000000                                     |
| Dysprosium | 3.5                           |                                               | Antimony          | 0.2                           | 28800                                         |
| Erbium     | 2.3                           |                                               | Scandium          | 14                            | 411                                           |
| Europium   | 0.88                          |                                               | Samarium          | 4.5                           | 1280                                          |
| Gallium    | 17                            | 339                                           |                   | 5.5                           | 698                                           |
| Gadolinium | 3.8                           |                                               | Tantalum          | 1                             | 5760                                          |
| Germanium  | 1.6                           |                                               | Terbium           | 0.64                          | 9000                                          |
| Hafnium    | 5.8                           |                                               | Tellurium         | 0.001                         | 5760000                                       |
| Mercury    | 0.067                         |                                               | Thorium           | 2.8                           | 2057                                          |
| Holmium    | 0.8                           |                                               | Titanium          | 4100                          | 1                                             |
| Indium     | 0.05                          |                                               | Thallium          | 1                             | 5760                                          |
| Iridium    | 0.000022                      |                                               |                   | 0.33                          | 17455                                         |
| Lanthanum  | 30                            |                                               | Uranium           | 10.7                          | 538                                           |
| Lithium    | 20                            |                                               | Tungsten          | 2                             | 5760                                          |
| Luthetium  | 0.32                          |                                               | Vanadium          | 107                           | 54                                            |
| Manganese  | 600                           |                                               | Yttrium           | 22                            | 262                                           |
| Molybdenum | 1.5                           |                                               | Ytterbium         | 2.2                           | 2618                                          |
| Niob       | 12                            | 480                                           | Zinc<br>Zirconium | 71<br>190                     | 46<br>30                                      |
|            |                               |                                               | LICOMUM           | 190                           | 30                                            |

#### Monetary values of alkali metal resources



 Concentration (ppm)

 Fig. 1. Log—log plot showing results from the basic screening of potentially profitable elements in desalination concentrate that are analyzed/discussed further. For the el 

| Element | Concentrati<br>on in sea<br>water<br>(g/m3) | Replacement<br>cost, (\$/kg) |
|---------|---------------------------------------------|------------------------------|
| Li      | 0.18 [22]                                   | 10                           |
| Na      | 10800                                       | 0                            |
| Κ       | 400                                         | 0                            |
| Rb      | 0.12 [23]                                   | 0                            |
| Cs      | 0.0003                                      | 30000                        |

## Monetary values of impacts on human health

| Disutility category                                      | Unit        | Weighting<br>factor | Value,<br>(\$) | Note                                                                                            | Uncertainty<br>factor |
|----------------------------------------------------------|-------------|---------------------|----------------|-------------------------------------------------------------------------------------------------|-----------------------|
| Years of life lost (YLL)                                 | pyear       |                     |                | Working capacity lost at premature death.                                                       | 1.3                   |
| Undernutrition                                           | pyear       | 0.06                | 6 424          | Wasting protein-energy undernutrition with some development disability.                         | 1.1                   |
| Diarrhea                                                 | pyear       | 0.202               | 11 242         | Caused by polluted drinking water                                                               | 1.5                   |
| Malaria episodes                                         | pyear       | 0.191               | 20 450         | Potential impact from climate change                                                            | 1.1                   |
| Gravation of angina pectoris                             | pyear       | 0.06                | 6 424          | Average for gravation of mild to severe symptoms                                                | 1.5                   |
| Cardiovascular disease                                   | pyear       | 0.1                 | 10 707         | Median value for several categories                                                             | 2.4                   |
| Infarcts                                                 | pyear       | 0.0804              | 8 795          | Acute myocardial infarction: days 1–2, 0.422 (0.28–<br>0.566) + days 3-28, 0.056 (0.035–0.082), | 1.3                   |
| Asthma cases                                             | pyear       | 0.043               | 4 604          | Treated asthma. Untreated 0.054                                                                 | 2                     |
| Chronic obstructive pulmonary disease, mild and moderate | pyear       | 0.17                | 18 201         | Ambient air pollution is not expected to give any severe symptoms                               | 2                     |
| Cancer                                                   | pyear       | 0.2                 | 21 413         | Mostly lung cancer, but other forms exist                                                       | 2                     |
| Skin cancer                                              | pyear       | 0.05                | 5 353          | Melanoma and other skin cancers                                                                 | 2                     |
| Low vision                                               | pyear       | 0.17                | 18 201         | Decreased stratorpheric ozone layer                                                             | 2                     |
| Poisoning                                                | pyear       | 0.6                 | 64 240         | Largely from pesticides                                                                         | 1.2                   |
| Intellectual disability: mild                            | pyear       | 0.031               | 3 319          | Cause by lead and mercury                                                                       | 4                     |
| Osteoporosis                                             | per<br>case | 1.28                | 137 045        | Caused by Cd                                                                                    | 3                     |
| Renal dysfunction                                        | per<br>case | 0.64                | 68 523         | Caused by Cd and Hg                                                                             | 2                     |

## Monetary value of emission of 1 kg of CO<sub>2</sub>

|                |                                         |                   |                     | Environment |            | Indicator | Impact                   |
|----------------|-----------------------------------------|-------------------|---------------------|-------------|------------|-----------|--------------------------|
| Environmental  |                                         |                   |                     | al impact   | Uncertaint | value,    | value                    |
| good           | Impact indicator                        | Unit              | Pathway             | factor      | У          | (\$/unit) | (\$/kg CO <sub>2</sub> ) |
| human health   | YLL                                     | pyear             | heat stress         | 2.65E-08    | 1.6        | 107 067   | 2.84E-03                 |
| human health   | YLL                                     | pyear             | cold moderation     | -4.16E-09   | 1.6        | 107 067   | -4.45E-04                |
| human health   | YLL                                     | pyear             | undernutrition      | 1.74E-06    | 2          | 107 067   | 1.86E-01                 |
| human health   | YLL                                     | pyear             | flooding            | 1.66E-10    | 3          | 107 067   | 1.78E-05                 |
| human health   | YLL                                     | pyear             | diarrhoeal diseases | 1.21E-07    | 3          | 107 067   | 1.29E-02                 |
| human health   | undernutrition                          | pyear             | food supply         | 1.72E-06    | 4          | 6 424     | 1.11E-02                 |
| human health   | working capacity loss                   | pyear             | heat stress         | 4.53E-03    | 2          | 30        | 1.36E-01                 |
| human health   | diarrhea                                | pyear             | drinking water      | 2.69E-10    | 3          | 11 242    | 3.02E-06                 |
| crop           | production capacity                     | kg                | climate change      | 1.01E-02    | 3          | 0.289     | 2.93E-03                 |
| crop           | production capacity                     | kg                | rise of sea level   | 4.12E-03    | 3          | 0.289     | 1.19E-03                 |
| meat           | production capacity                     | kg                | draught             | 3.72E-04    | 3          | 2.59      | 9.63E-04                 |
| fish           | production capacity                     | kg                | ocean               | 2.92E-05    | 2          |           |                          |
|                |                                         | 2                 | acidification       |             |            | 2.42      | 7.08E-05                 |
| wood           | production capacity                     | m <sup>3</sup>    | climate change      | 0.00E+00    | 6.90E-06   | 72        | 0.00E+00                 |
| drinking water | production capacity                     | $m^3$             | climate change      | 9.06E-04    | 3          | 1.87      | 1.69E-03                 |
| biodiversity   | share of threat<br>to redlisted species | Dimensi<br>onless | habitat change      | 1.69E-16    | 4          | 7.61E+10  | 1.29E-05                 |
|                |                                         |                   |                     |             | S          | um        | 3.56E-01                 |

#### Total value of global emissions and resource extractions

| Flow                        | Unit | Value/unit | Global flow | Value, \$ |
|-----------------------------|------|------------|-------------|-----------|
| CO <sub>2</sub>             | kg   | 3.75E-01   | 3.26E+13    | 1.22E+13  |
| PM2.5                       | kg   | 2.74E+02   | 3.80E+10    | 1.04E+13  |
| Au                          | kg   | 3.20E+06   | 2.60E+06    | 8.32E+12  |
| Rh                          | kg   | 3.20E+08   | 2.50E+04    | 8.00E+12  |
| Urban land use >0.5 million | m2yr | 1.18E+01   | 4.68E+11    | 5.52E+12  |
| Sb                          | kg   | 2.88E+04   | 1.63E+08    | 4.69E+12  |
| Urban land use<0.5 million  | m2yr | 8.00E+00   | 4.68E+11    | 3.74E+12  |
| CH <sub>4</sub>             | kg   | 1.06E+01   | 3.33E+11    | 3.54E+12  |
| Fe                          | kg   | 1.10E+00   | 3.00E+12    | 3.30E+12  |
| Oil                         | kg   | 8.00E-01   | 4.01E+12    | 3.21E+12  |

#### Conclusions

- The total decrease of the natural capital 2015 was 8.92E+13 \$.
- The global GDP 2015 was 7.56E+13 US\$.
- It looks as we are destroying more values than we are creating.
- However, in valuing clean air and water via impacts on human health, values for working capability of OECD inhabitants were used. This means that the environmental impact values are not directly comparable with the global GDP.
- A better value for global economic capability would be the working capacity of an average OECD inhabitant multiplied with the global population: 107067\*7.2E+09 = 7.71E+14 \$.
- This is 10.2 times higher than the global GDP.
- When applying 7.71E+14 \$ for values created globally, the decrease of natural capital is now 11.6% of this new economic capability.
- But there is still a problem in that we are borrowing 11.6 % each year from the natural capital, while we are not increasing our economic capability more than a few %. This is not sustainable.

#### Applications

- In product design, e.g. by Volvo AB and Volvocar
- For investments, e.g. by AkzoNobel
- In ESG accounting e.g. by Harvard Business school
- In education, e.g. by Chalmers and MIT
- For Environmental Management enligt ISO 14001

## Further reading

- Steen, B. and Palander, S., A selection of safeguard subjects and state indicators for sustainability assessments. The International Journal of Life Cycle Assessment vol. 21 (6), pp 861–874.
- Steen, B., Calculation of Monetary Values of Environmental Impacts from Emissions and Resource Use – The Case of Using the EPS 2015d Impact Assessment Method. Journal of Sustainable Development vol. 9 (6), pp 15-33.
- Steen, B., Monetary valuation of environmental impacts. Models and data. CRC Press, Boca Raton, Fl. USA 2019.
- Steen, B. EPS 2015d:1 Including and excluding climate impacts from secondary particles, Chalmers University of Technology, Swedish Life Cycle Center Report no 2015:4a and 2015:4b', available at <u>www.lifecyclecenter.se</u>
- Bengt Steen, Klas Hallberg, Per Hanarp, Jacob Lindberg, Ellen Riise, Mia Romare, Tomas Rydberg, Anna Wikström, Communicating monetary values of environmental impacts – Case studies related to ISO DIS 14008 (poster at SETAC 2018), available at <u>www.lifecyclecenter.se</u>
- Bengt Steen, Anna Wikström, Mia Romare, Jacob Lindberg, Ellen Riise, Tomas Rydberg, Using monetary values of environmental impacts to support energy choices – three case studies, SLC Report no 2018:02, available at <u>www.lifecyclecenter.se</u>
- Webpage: https://www.ivl.se/english/startpage/pages/our-focusareas/environmental-engineering-and-sustainable-production/lca/eps.html

## **QUESTIONS & DISCUSSION**

## **THANK YOU**

#### lifecyclecenter@chalmers.se

www.lifecyclecenter.se Twitter: @lifecyclecenter LinkedIn: Swedish Life Cycle Center And sign up for newsletter!

