Essity case study for project "Modelling recycling in life cycle assessment"

May 19th 2020 Pernilla Cederstrand, Senior Environmental specialist

A Leading Global Hygiene and Health Company

46 000

📸 essity

employees

people uses our products everyday

2 Essity Internal

Why is modelling of recycling in LCA important for Essity?

Set up of Essity case study

- Use of Excel calculation tool
- Use of generic data from LCA database
- Focus on 6 selected allocation approaches
- 8 scenarios for fossil and renewable plastic packaging film:

Scenario	Feedstock	Material content	End-of-life	
1	Fossil	Primary		
2	Renewable	polyethylene film	100 % incineration (without energy	
3	Fossil	Recycled		
4	Renewable	polyethylene film	(covery)	
5	Fossil	Primary	100 % collection for material recycling	
6	Renewable	polyethylene film		
7	Fossil	Recycled		
8	Renewable	polyethylene film		

In addition we tested 3 different approaches for attribution of removal of biogenic carbon

Since no method descriptions includes guidance on this

- 1. to the primary production, i.e. (EV & E^*V)
- 2. to the final disposal, i.e. (ED & E*D)
- 3. as described in EN 15805 and EN 16485 (EPD for construction works, round and sawn timber)

Results show 8 bars per method

Scen- ario	Feedstock	Material content	End-of-life	Colour in figures
1	Fossil	Primary polyethylene film	100 % incineration (without energy recovery)	
2	Renewable			
3	Fossil	Recycled		
4	Renewable	polyethylene film		
5	Fossil	Primary polyethylene film	100 % collection for material recycling	2
6	Renewable			22
7	Fossil	Recycled polyethylene film		11
8	Renewable			<i>1</i>

Results confirmed earlier findings

Carbon footprint results with biogenic carbon removals attributed to final disposal.

- There are no objective methods
 - All methods include value choices
- It is important what method to use since it may lead to different decisions
- Relevant industry data needed to test methods
- Renewable materials overlooked

Approach 2 and 3 for attribution of biogenic carbon removal show identical results

PE recycled, R1=1, R2=0 (Ev=renewable)

PE recycled, R1=1, R2=1 (Ev=renewable)

2. Carbon footprint results with biogenic carbon removals attributed to final disposal.

PE recycled, R1=1, R2=0 (Ev=fossil)

PE recycled_R1=1, R2=1 (Ev=fossil)

👹 essity

Simple cut of

PE fossil, R1=0, R2=0

PE fossil, R1=0, R2=1

■ PE renewable ,R1=0, R2=0

vable .R1=0. R2=1

9

1,0 Kg CO 2-0,8 CO 2-

Significant differences between approach 1 vs 2 and 3 for attribution of biogenic carbon

1. Carbon footprint results with biogenic carbon removals attributed to primary production

👹 essity

Significant differences between approach 1 vs 2 and 3 for attribution of biogenic carbon

2. Carbon footprint results with biogenic carbon removals attributed to final disposal and/or 3. when in accordance with EN 16485 and EN 15804.

Some other findings

- Methods that include average data (e.g. PEF circular footprint method 50/50) gives lower incentives for actual improvements
- Simple-cut off (EPD) are simple to use but gives lower incentives than e.g. PEF circular footprint formula, for recycling of renewable materials

Conclusions

- Increased internal knowledge
 - Involved full sustainability team (11) at Essity
 - Improved input for decision on what method(s) to use when
- Remaining issues
 - How to treat energy recovery vs material recycling
 - Attribution of biogenic carbon removals
 - None of the methods show the full benefits of recycling renewable materials
 - Preference for Simple cut off (EPD) or PEF circular footprint formula?