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Abstract

In this thesis, long-term optimisation methods for indiastiransition processes
have been developed, taking monetary and environmentaldenations into ac-
count. Two different methods for investment optimisati@vér been developed.
First, an optimisation method comprising simultaneousudation of the long-
term investment strategy and the short-term utilisatidreste for a deterministic
demand was developed. The method has been applied to thefcasging an
investment strategy for minimising the production cost#aingle hydrogen refu-
elling station. The problem was shown to be convex; thusekalting solution is
the global optimum. Second, an investment optimisatiorhogbtising stochastic
demand scenarios and multi-objective optimal control talpce the Pareto front
of the two conflicting objectivesxpected production cosindexpected unsatis-
fied demandvas developed. This method was applied to the case of fintmg t
optimal investment strategy for a combined hydrogen antdng refuelling sta-
tion. Depending on the preferences of the decision-makamyrdifferent feasible
solutions can be found. However, it was also found that, du@e uncertainty
of the stochastic demand function, satisfying all the ested demands would re-
quire a production capacity well above the mean demand,hwhawuld be very
costly to maintain.

In addition to the two methods for investment optimisatiarmodelling ap-
proach for systems combining economic and environmenpacas has been de-
veloped as well. This approach has been used for modellimgeproduction
facilities, taking both economic and environmental issné&sconsideration.

In order to deal with prediction uncertainties, time sepge=diction using ge-
netic algorithms was investigated as well. Discrete-timedztion networks, a
novel type of recurrent neural networks, were introduced,\aere shown to pro-
vide one-step macro-economic time series prediction widatgr accuracy than
several other methods.

Keywords: Transition strategy optimisation, Investment stratedvidti-objective
decision making, Optimisation under uncertainty.
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Chapter 1

Introduction

This thesis focuses on optimisationioflustrial transition processesA transi-
tion process can involve change of equipment, re-locatigpremises or some
other structural change in, for example, societal infradtire. These processes
often involve large investments that are implemented oveng time, and in a
situation of uncertain future development. Under suchucirstances, finding the
optimal investment strategy is not an easy task. A commomnoagp in invest-
ment planning [1, 2] is to list a number of alternatives, amehtto pick the best
one by hand or to use a rule-of-thumb technique, a procetiatgin the case of
highly complex systems, most often results in a sub-optgsokition being found.
A better approach for finding the optimal solution is to make af mathematical
optimisation techniques suchdgnamical optimisation to search for the optimal
investment strategy; Such approaches are consideredithtsis.

The research objective in this thesis is to develop methadsgdtimisation of
industrial transition processes with monetary and envirental considerations.
In doing so, three areas are investigated: (1) modellingroflyction systems,
(2) prediction of future behaviour using TSP and (3) optatien of investment
strategies usingptimal control.

In the field of economics, investment planning is an impdrtapic [3, 4].
Of highest interest is then, of course, to find the optimaksgtmnent strategy.
This problem, which can be solved using optimal control tiie® in general
defined over some period of time. In other, related appbeati optimal con-
trol theory is used for, e.g. maximising growth in nationabeomics [5], finding
optimal investments in funds [6], production planning [@htimisation of se-
guential investments [8], and maximising return on cagitads [9]. Under the
influence of a stochastic disturbance, here in the form ofeenain future devel-
opment, the optimisation problem becomest@chastic dynamic optimisation
problem. In economics, this type of problem is referred tanasstment under
uncertainty[10, 11, 12] and in process engineeringpaiscess design under un-

1



2 CHAPTER 1. INTRODUCTION

certainty[13, 14]. In Paper IV, stochastic optimal control theory sed to find
the lowest expected production cost for a combined hydragetnythane refu-
elling station under the influence of three stochastic dehsaenarios. In both the
above cases, discussed in Papers Il and 1V, the developéwdsstre intended to
be used for decision support.

Recent studies have been made regarding the economicéilligasf hydro-
gen in regard to the infrastructure that must be built [15,116 18, 19, 20, 21].
However, none of these studies investigates the implieatdd investments over
time. By contrast, in Paper Il optimal control theory is usedind a short-term
equipment variable utilization for one-week periods anndha same time, a long-
term investment strategy for the whole investment periogtdag 20 years with
the aim of minimising the production cost for a plant. The Inoetis exemplified
by a hydrogen dispensing infrastructure case.

Predicting future values of key variables is, of coursehlyigelevant in the op-
timisation of transition processes. Even short-term ptézh is important. Such
prediction is considered in the field bimne series prediction(TSP). Due to the
often high level of noise present, standard procedureb, asitheauto-regressive
andmoving-averagemethods, are sometimes not fully successful [22, 23, 24]. In
stead other, more adaptive methods based, for example,uval meetworks can
be used [25, 26]. In Paper Il of this thesis, a novel type afraknetwork is
developed for prediction of noisy time series.

When evaluating transition processes the economic corgseqsa are impor-
tant. The environmental awareness in today’s society istemtly raising the
requirements of a cleaner production process. Thus, inthleisis, the environ-
mental effects are considered as well. At the same time threasing complexity
of the production systems makes the environmental anatysis difficult to carry
out. In the 1990s more advanced methods were developedish @saronmen-
tal analysis of technical systems. One of these methodteisycle assessment
(LCA). Much has been written about LCA. The ISO standardiD442 [27] give
very general guidelines on how an LCA should be performedadty many stan-
dard papers on LCA, e.g. [28, 29, 30, 31, 32, 33], approachadie in a rather
non-mathematical way. Until 1998 only one paper [34] waslighbd regarding
guidelines on how to carry out the actual calculation, theated normalisa-
tion. After 1998, the subject of normalisation in LCA has beensidered in a
mathematical point-of-view by Heijungs [35, 36, 37]. All fe mathematical
methods presented by Heijungs only consider the standafdwd@ch includes
a linear and static model representation. For other appesathere is only a
limited number of texts available. Examples include lineptimisation of LCA
systems [38, 39], multi-objective optimisation [40] anchdynic life cycle inven-
tory models [41, 42]. Some cases with integration of ecororost objectives
have also emerged [43, 44]. There is still, however, a lagiergial for improve-
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ments concerning, for example, the range of applicabilitthe models. This
thesis investigates a number of approaches, how they casdak and possible
improvements. The findings are exemplified by a cement ptamtucase [45]
in Paper | and are intended to be used in investment optilmisatsuch as those
presented in Papers Il and IV.

1.1 Main contributions

Transition processes taking place in the societal infuatire and in large in-
dustries are in general very complex systems. This is dubddaict that these
systems do not only have technical and economic aspects|dmsocial, envi-
ronmental, political and geographic aspects. To take alidlconsiderations into
account when constructing a model is, of course, impossiiiies thesis focuses
on economic and environmental aspects and aims at provsdimg examples of
general tools for carrying out structural transition opsation. It is the aim of the
author that, when the tools presented here are used togdtheifort of carrying
out the above-mentioned type of optimisations should baeaed considerably.

Mathematical models are generally specific to the appboatkt hand. Using
the type of models discussed in this thesis, the flexibililjhwegard to the types
of calculations that are possible to carry out can be inegasnsiderably [46,
47, 48]. These models come from the study of physical sysfé@jsbut can be
successfully applied to other types of systems, e.g. emviemtal systems [50].
The aim of the models is to provide the optimisation algonitiwith the effects
of changes in the future strategy. In doing so, the modeldasavide the future
behaviour of key parameters. Some of these can be modeltg=tail but others,
where exact knowledge is lacking, must be predicted. Oneofvaghieving this is
by time series prediction [23, 51, 52]. In this way the shertn future behaviour
can be estimated, something that is important for fast dycertsing the above-
mentioned tools, the transition strategy is then optimisgdg stochastic multi-
objective optimisation. To summarise, the main contritmsi of the presented
work are:

¢ A modelling approach for production systems with environtaémeasures
comprising separation of model and problem formulatiord Eading to
more flexible models (Paper ).

e Progress in time series prediction (TSP) using geneticrégos (GASs)
resulting in increased accuracy for predictions of noigyetiseries (Paper

).

e Methods for concurrent optimisation of investment strege@nd run pat-
terns for long-term planning of industrial production siteaking economic
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and environmental considerations into account. In Pap#relmodel is
of the single-objective deterministic kind and in Paper IVtloe multi-
objective stochastic kind.

e Specific results regarding optimal investments for hydnoged hythane
refuelling stations (Papers Il and V).

The author was the main contributor to Papers Il and IV. IneP&pthe author’s
contributions were to develop the modelling approach aedribdel framework,
to carry out all calculations needed for solving the prohland to write a signif-
icant part of the paper. In Paper Il both authors contrib@gually.



Chapter 2

Transition processes

Structural transition processes occur in all industriesariples include change
of machinery, moving of production units and change of potidm at current
sites. For decision support, a number of calculations ameechout regarding
the economic consequences and, at times, optimisatioroare[53]. However,
only rarely are both economic and environmental aspecéentaidto account. This
thesis presents some methods for integrating economicramwemental aspects
when assessing industrial transition processes. Thaseselintended to be used
for decision support.

In particular, the problem of optimising investment stgis, i.e. selecting
when and to what extent investments are to be made for maxipaufarmance,
is explored. In connection with this problem, the topic odglictability of vari-
ables has also been considered within the framework of teriesprediction. In
most cases in this thesis the connections to economy areieéxipé. economic
measures appear in the model, and the environmental commeetre implicit,
i.e. they are present through the use of an environmentalbuirable technique. It
should be kept in mind that this implies a constraint in thessghat only environ-
mentally favourable techniques are considered to be pdlteo$et of acceptable
solutions. However, the developed methods, such as the-otjéictive optimi-
sation procedure described in Paper 1V, have originallynlesigned for use in
cases with explicit connections between environmentalemoetomic aspects.

When considering large industrial structures, the econ@onsequences are
distributed over a number of years. For a complete produdithe in a factory or
for a major societal infrastructure change, the conseqgemight be distributed
over a period exceeding 20 years [54, 55]. To be able to carrgro optimisation
of the economic results, the variation in a number of vagapk.g. the rate of
interest, the technical development within the field andytberly production and
demand, must be estimated. In order to improve the accurasych variables, a
study of time series prediction (TSP) has been undertak&ajoer I, aimed at

5



6 CHAPTER 2. TRANSITION PROCESSES

improving short-term (one-step) prediction of macroecoimtime series, where
the time step length often equals one year or a quarter ofa lf@avever, long-

term predictions are much harder, and it is generally nosiptesto make optimi-

sations of investment strategies that will be valid for tHeole investment period
(20 years, say). Instead, a dynamic approach must be takée tptimisation

of transition processes, such that, when the assumed vafl@eparameter have
deviated substantially from the expected path, a new catioul is carried out,

based on the new, corrected behaviour of the parameter gtigneThis makes it
possible always to have the best and most up-to-date stalittansition strategy
at hand.

Life cycle assessmenfLCA) [31, 32, 33, 34] is a way to quantify environ-
mental influences of a product (or service) over its entiie lin the study pre-
sented in Paper I, similarities and differences between b@&technical system
theory [56} were investigated in order to make improvements in compigico-
nomic and environmental modelling. Incorporating the newdifigs, a model of a
cement production process was generated and calculatioimsfroving the eco-
nomic and environmental performance were performed. Theablas involved
express aspects of quality and economy, as well as resosecand emissions.
The model developed was intended for many types of calouatregarding,
e.g. economy, product quality and emissions.

Changes toward more environmentally favourable solutiteguently incor-
porate large investments in infrastructure. The cost ameiainty of changing
these facilities are usually considered to be obstacleth®mtroduction of new
techniques. In Papers Il and 1V, methods for finding optima¢stment strategies
for this type of environmentally favourable productionifdies are investigated.
Based on an assumed future development scenario, optinegitinent strategies
are calculated. In Paper IV, special emphasis is put on redulee uncertainties
by using several different scenarios and stochastic ogéitiin. The applicability
of the developed method is exemplified in two studies on ol investment
strategies for a hydrogen station and a combined hydrogéhythane refuelling
station.

Finding the optimal solution to the set of problems discdsd®ove is far from
trivial. Nevertheless, in reality, many such problems asked in an intuitive
manner based on experience [57, 58], in a large part due ta¢hthat the mathe-
matical formulation of the problems usually is very hard twiffor thesecomplex
systemg$59, 60]. A complex system here signifies a system composeacoim-
ber of simpler subsystems with a large, often huge, numberefconnections.
Due to the large number of connections, these systems aadlyusary hard to

The term technical system theory is here used for the scieho®nstructing models of
processes etc. as is done in control theory.
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understand and model. One example of this is emergence26636 Emergent
properties are properties possessed by a system, whicbtdamitraced back to
any of its parts. A good explanation of emergence is give®4j s "A complex
system usually involves a large number of components. Toasgonents may be
simple, both in terms of their internal characteristics andhe way they interact.
Still, when the system is observed over longer time and tesgles, there may
be phenomena that are not easily understood in terms of thplsicomponents
and their interactions

Optimisation of complex systems can therefore play a vepoirtant role, by
revealing unforeseen solutions better than those cuyremdilable. One should
keep in mind though, that accurate optimisation over permdending 20 years
into the future is not easy, even using techniques that eetheeffects of uncer-
tainty such as stochastic optimisation with multiple segmsa When predictions
are generated using models built from time series datathi&eTPNs in Paper
[, an implicit assumption is that the future developmesitdws a pattern similar
to that of the past data. In this case an unforeseen majot exprdisrupt all pre-
dictions instantaneously. Another option is to make pitaoiidbased on a detailed
model of the system combined with probable future develogseas is done in
Paper IV. However, even in this case, an unforeseen eventawetred by the
model can disrupt all predictions. Since nothing in natsrdiscontinuous there
are, however, always precursor events to major events.eftifg these events is,
of course, very important and therefore successful opéitius requires extensive
knowledge of the system under study. Ideally all possiblerioutcomes should
be included in the model. In reality this is impossible thougnd one therefore
has to settle for less-than-perfect models.

2.1 Economic and environmental aspects

The objectives explored in this thesis are mostly relateecamnomy. Therefore
this section starts with a discussion of the economic measused in Papers |l
and IV, after which some important aspects of one possibdamtjfication of en-
vironmental impact is presented, namely LCA. Both econoanid environmen-
tal measures are considered, since it is desirable to findommentally viable
solutions that are still economically favourable. No compaan support non-
profitable environmental sustainability.

In the literature, future costs and incomes are usuallyodisted with regard
to the discount rat® > 0 using the net present value correction [65]

1



8 CHAPTER 2. TRANSITION PROCESSES

wheret is the time. The above equation reflects investors’ pret&efimmedi-
ate return of cash in contrast to future returns. The actisabdnting depends on
the length of time and the discount rate. Usually, the diatoate is the risk-free
interest rate added to an interest rate reflecting the rigitwed in the specific ven-
ture. As the name implies, the risk-free interest rate istfe rate earned from a
completely risk-free investment. When optimising pol&ctbat span a long time,
as the calculations in Papers Il and IV do, the value of theadist rate can have
a significant effect. As is pointed out in Paper IV, for a disebrate of 0.1 and in
the case of an evenly distributed cost, the effective disting isC(¢) = 0.4466
for a time period of 20 year€)(t) is the mean value af),(¢) over the time period
considered. The high discount rate in Paper IV is motivaiethb high risk; the
investments are made in a new technique with uncertain pakand acceptance.

In both Paper Il and Paper 1V, the loan for purchase of equitiinseassumed
to be of the annuity type. In this case, it is possible to dateua capital cost per
time unit for the refuelling station. The additional costgy. for purchase of raw
materials and maintenance, are then added and a total tausémus production
cost at time per produced unit can be calculated, which is measured in pED
kg Hs.

In order to find the mean production cost for the entire inwestt period,
one must integrate the instantaneous production cost. perRb three ways of
integrating this cost are shown: (1) adding the costs aimaéig without discount-
ing, (2) discounting future costs using Eqg. (2.1) above &)dliscounting future
costs using Eg. (2.1) and distributing the total cost evenlyr the whole invest-
ment period. One should keep in mind that the third optiorsdus reflect the
sum of the real cost to the production facility. The discdssean production
costs represent different ways of calculating the costgfoduction, depending
of preference. They are all candidates for an objectivetion¢hat can be used
for optimisation. It should be noted that if the total capdast is discounted to
present day value using the same interest rate as for an adsarmuity loan, the
result is the absolute investment cost. Since, in Papenly, one week per in-
vestment is explicitly evaluated, the above ways of catouethe costs are used,
for simplicity. Details on how production costs have beelewated are given in
Paper II.

In Paper IV, the optimisation is carried out over the wholestment period
covering 20 years. Since loans are considered to be of thétgriype, the costs
for investments are not discounted. Investments in equiper@ only subject to
a decreased cost due to increased production and technidéegiopment. This
is due to the fact that the effect of the annuity loan and tkeaiinting will can-
cel each other out, provided that the discount rate is theesdmPaper |V, the
production cost was calculated over the entire investmenbg@, taking the total
non-discounted purchase cost into account. This is in astito Paper Il where
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the production cost was calculated for one week per invastnteking the non-
discounted cost for the annuity loan into account, a proeethat results in a
time-varying production cost, as can be seen in Paper lIrt4pan investments,
all other production costs were discounted, however. Thampeoduction costs
were calculated as the sum of costs divided by the sum of sgldogen and
hythane, respectively.

Environmental effects are often less tangible than are @oan ones and
therefore harder to measure and quantify. One reason igtttet short perspec-
tive many environmental aspects tend to have little or narenmental effect.
Instead, at a certain level, there is an abrupt and sometimieseseen effect.
Another reason is that the causality of environmental &fecnot always totally
understood. One example is the Greenhouse effect. Obyidusiglobal mean
temperature is increasing in the short-term perspectiveistthis caused by hu-
man activities? Economic aspects, on the other hand, tehdw® a more direct
and immediate effect.

However, one way environmental influences can be quantsibg LCA. The
life cycle usually starts with extraction of raw materiafglacontinues with trans-
portation, manufacturing, use and possibly re-use. It #afs with waste man-
agement, recycling and disposal. There exists a vasttliteran the concept of
LCA, see e.g. [30, 34, 66, 67, 68].

In 1997 the ISO standard 14040 on LCA was approved [27]. kstandard
LCA is defined as...the environmental aspects and potential impact threugh
out a product’s life (i.e. cradle-to-grave) from raw mat@racquisition through
production, use and disposaEach of these stages consumes resources and pro-
duces emissions and waste. In LCA all these aspects are itatkeaiccount and
are related to the product or function produced. LCA furtiers at assessing the
impact of the production on nature.

In the life cycle inventory analysis (LCI), which is one paftLCA, the re-
sources, emissions and products related to the productgiam are measured.
Then a model over the production system is created. In om&now the ef-
fects of each produced unit (in LCA calldédnctional unit), the measured re-
sources etc. are scaled to the functional unit. This is dgreglgregating alunit
processesn the product system and scaling the flows of these procéssesatch
the reference flowof the system, a process referred torasmalisation. The
data used in the inventory is based on time-averaged statetd is hence in-
dependent of time. In addition a linear relation betweeouese use, emissions
and production is assumed. The resulting normalisation istenathematically
equivalent to solving a linear equation system. The eqoatistem is usually
well-posed by construction, i.e. having equal number oiades and constraints,
and hence possible to solve exactly. Publications on LCArcbandbooks, case
studies and theoretical studies on the concept that do maemeral give any



10 CHAPTER 2. TRANSITION PROCESSES

CO, Sand
1kg ‘100 kg
I
Melting
92 kg glass
vy 0.2 kg glass | 1.9 kg glass
. II . IV
Casting Crushing
1 bottle 4 10 bottles
y 10 bottles
S . III| 1 bottle
cannin
& Out sorted

V9 bottles bottles
Glass bottles

Figure 2.1: Example of a model for a small glass bottle production precékte that,
since the data for the different processes (shown as boxée ifigure) are taken from
different sources, e.g. product data sheets, the amoufitssofio not match at this stage.
The objective of the normalization is to scale the processethat the flows do match.
The results of the normalization procedure are shown inrgigu2 below.

directions on how to represent the flow model and form theltiaguequation
system [33, 69]. Recently a number of publications on themgaational part
have appeared [36, 37, 70, 71]. The result of the normabdisat the functional
unit presented there is expressed as

g = BA'f, (2.2)

where A is a matrix describing the internal flows of the technicaltsys (the
technology matrix)f the demand vector, i.e. a vector expressing what is being
produced, and3 the intervention matrix, i.e. the external flows to and frdma t
technical system.

An example of a model for a small glass bottle production essas shown
in Figure 2.1. In this process sand is melted to glass, ptiaguzarbon dioxide
emissions. The glass is then cast to bottles which are sddonéefects before
delivery. Some bottles are discarded in the scanning psodes to defects and
these bottles are returned to the casting process aftdricgu€Each of the above
processes are unit processes. Using the nomenclaturductd above, the tech-
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CO, Sand
Tﬁ.OOZZ kgl 0.22 kg
1
Melting
0.20 kg glass
y 0.22 kg glass | 0.02 kg glass
. II . IV
Casting Crushing
1.11 bottles 0.11 bottles
y 1.11 bottles
S . II| 0.11 bottles|
cannin
€ [TOut sorted

V1 bottle bottles
Glass bottles

Figure 2.2: The resulting flow model for the small glass bottle produtfiwocess intro-
duced in Figure 2.1.

nology matrix becomes

92 —-0.2 1.9
0 1 —-10 O

A= 0 0 1 =10 |~ (2:3)
0 0 9

where the rows i represent the flows of glass (row 1, measured in [kg]), bettle
([pcs], row 2), recycled bottles ([pcs], row 3), and delegbottles ([pcs], row 4),
respectively. The columns represent the processes ieditgt Roman numerals
in Figure 2.1. Note that negative numbers indicate a flow aorocess, and
positive numbers a flow out from a process. The interventiatrimmbecomes

=100 0 0 O
5= 00 0] (2.9)

where the first row represents sand ([kg]) and the second epvesents carbon
dioxide ([kg]). To calculate the intervention for a refecerflow of one produced
bottle (after the calculation this flow will become the fupnaogl unit), f is set to
f=10001]" givingg = BA™'f = [-0.2186 0.0022]". The resulting resource
use and emissions released are then 0.2186 kg sand and Rgd€2don dioxide,
respectively. The normalised flow model is shown in Figuge 2.






Chapter 3

Optimisation techniques

The transition processes discussed in Chapter 2 are rigtdedined over some
time period; they arelynamical problems Industries are, of course, trying to
maximize performance, implying the need for optimisation.

In order to optimise a transition process a dynamical og@ation technique
must be utilized. In most cases, dynamical optimisatiomlems are solved by
transforming them into static optimisation problems. Hfere, this chapter starts
with a short overview of unconstrained and constrainedlimear static optimisa-
tion which will lay the foundation for later discussions gyndmical optimisation
techniques in Section 3.3 below. In particular, the SQPrélyn used in Paper Il
and the multi-objective genetic algorithm used in Paper W e examined. In
Section 3.4 optimisation of systems influenced by stochastiturbations will be
discussed.

The goal of optimisation is to find the optimal poit for a givenobjective
function f(x), wherex = (z1,2,,...,2y) € R". For the single-objective case,
f = fis a scalar, taking values iR', whereas, for the multi-objective case,
f ¢ RN. There may also be equality and inequality constraints @fdinm

0, (3.1)
d(x) > 0, (3.2)

as well as limits on the allowed intervals feri.e.x; < x < x,!. Despite the
modest appearance of this optimisation problem, findingoitenal point is, in
general, a difficult task.

A special type of optimisation problem is tlienvex problem. A function
f(x) : RN — Ris convex if the domain of the function, denotddmf, is a

1Throughoutthis thesis relations between vectors sush &sx require equal dimensions and
are to be interpreted component-wise.

13
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Figure 3.1: Example of a one-dimensional convex function.

convex set and

fOx+ (1 —=0)y) <0f(x)+(1—-0)f(y) (3.3)

Vx,y € domf, 0 < # < 1. A non-scientific geometrical interpretation is that if
f draws a curve that is bulging outward over its total extemsiioen it is convex.
An arbitrary example of a one-dimensional convex functggiven in Figure 3.1.
A problem is called convex if both the objective function ahd constraints are
convex. Such functions are important in optimisation sitimy make it possi-
ble to guarantee convergence [72]. Furthermore, many nawex optimisation
problems can be transformed into convex ones [73].

3.1 Deterministic optimisation techniques

The termdeterministicis here used to indicate that the optimisation algorithms
do not contain any stochastic parts. Thus, if such an algaris run twice, us-
ing the same set of inputs, the results will be identical toheather, i.e. they
are perfectly predictable. In deterministic optimisattbere exists robust algo-
rithms with guaranteed convergence for the linear casethieecase in which the
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objective function and all constraints are linear. One salglorithm is the Sim-
plex method [74]. However, in most practical problems thgedfive functions
are non-linear. Such functions will usually have both a glaiptimal point and
many local optimal points. Since it is very difficult to disgjuish between a lo-
cal and a global optimal point, simple gradient-descerdrélgms are usually not
successful. Such algorithms tend to get stuck on a locaimappoint instead of
finding the true global optimal point.

Finding the global optimal point is the major taskrafn-linear programming
(NLP) [75, 76]. Consider the general NLP problem

2 T
ste(x) = 0 (3.4)
dx) > 0

where f(x) is the (scalar, i.e. single-objective) criterion functieiix) the non-
linear equality constraints andi(x) the non-linear inequality constraints. The
functions f(x), c(x) andd(x) are assumed to be smooth, i.e. at least twice-
continuously differentiable. Leg(x) = V. f(x) denote the gradient vector of
the objective functionC(x) = g—f{ the Jacobian matrix of the constraint vector

c(x), andD(x) = 24 the Jacobian matrix of the constraint vecthx). Now
define the (scalar-valued) Lagrangian function in the atassvay [77]

L(x,A) = f(x) = Ale(x) — p'd(x), (3.5)

where A and p are Lagrange multiplier vectors. In an optimal point thetfirs
derivative of the Lagrangian with respectxtas zero, i.e

VLA, p) = g(x) = ATC(x) - D) = 0 (3.6)
where(x*, A*, u*) is the optimal point. In addition, requirements have to be pu
on the inequality part variablgs andd. At the optimal point, it is clear that an
inequality constraintl;(x*) can either be satisfied as an equalityfx*) = 0 or
strictly satisfiedd;(x*) > 0. In the former case the constraint is said tcaloéve
and hence a part of thective set4, i.e.i € A. In the latter case the constraint
is inactive and part of thanactive setA’, i.e.i € A’. For the active set the
requirements equal those for equality constraintsg.e. 0. For the inactive set
the multipliermustbe zero. This can also be formulated’ d(x*) = 0, which
is sometimes referred to as tbemplementary slackness conditiowith these
requirements, the Karush-Kuhn-Tucker (KKT) [78] conditifor optimality is
defined as

g(x") = ATC(x") — wTD(x) = 0
pwrd(x*) = 0 (3.7)

*

u

AV
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and p is sometimes referred to as the KKT multiplier. In addititve toriginal
constraints from Eq. (3.4)x(x*) = 0 andd(x*) > 0 must be satisfied at the
optimal point. In order to solve the KKT fat*, the active inequality constraints
are treated as equality constraints and the inactive oedgmored, giving

g(x) —n"Ix) = 0,
r(x") = 0, (3.8)
n = 0,

wherer € {x € R"|c(x) =0,d;(x) =0Vie A} andJ(x) = 9r/0z. Now
these re-defined requirements can be solved with Newtontkadeby carrying
out a Taylor series expansion of Eq. (3.8). Lettidg = V2 L, the expansion
becomes

g(x) = I (x)n + Hy(x)(x —x) = I (x)(n —n) = 0
rx) +Jx)E-x) = 0 (3.9)

which can be written as
H, J’ Y g

ERSIrsRH! 610
Solving the above equation will yield the stgpand the Lagrange multiplier at
the new pointy. The new point is then obtained as= x + p. Note that in
Eq. (3.10) the new Lagrange multiplier is calculated in asodite way while, for
the new pointx, the incremenp is calculated. The Newton step is then iterated
until convergence.

The Newton method defined above is a local optimisation dlgar In order
to improve the chances of finding the global optimum, one ns&yauglobalization
strategy. One example is the line-search method which djillst the step length
x by a factorg tox = x + Gp. The value ofj is usually determined by the rate of
progress measured by a merit function [79, 80]. Anotheroopi to adjust both
the magnitude and direction of the search step, so that drelsdirectionp will
lie within a given radius which defines a trusted region [81].

A widely used algorithm to solve the above NLP problem in BglQ), i.e. to
find the global optimum, isequential quadratic programmirf§QP), see e.g. [82,

83]. When using SQP, one may observe that Eq. (3.10) regeetenfirst order
optimality conditions for the the optimisation problem

1
min g’p + ipTHLp (3.11)
P

st.Jp=-—-r,
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Figure 3.2: lllustration of Pareto optimality. The objective is to mimise both the

unsatisfied hydrogen demand and the hydrogen productidn 8otutions marked with

small dots and crosses are part of the Pareto front whereamnts marked with circles
are not.

which is a quadratic programming (QP) problem. The SQP isgaeial al-
gorithm that makes use of inner and outer iterations. Theatig of the inner
iteration is to find a search directignwhich is used in the outer one to fulfill
the first order conditions for optimality. The search dir@ctp is found by solv-
ing the optimisation problem in Eq. (3.11). The outer itenatmakes use of the
new search direction by taking the step= x + ap, where the magnitude of
the step ¢) is determined by a line search method. This makes the SQébalgl
optimisation algorithm.

In Paper 1l the resulting NLP optimisation problem was sdlwssing the
NPSOL program [84], which is of the above SQP class. FirstNRSOL al-
gorithm aims at calculating a point thatfsasible starting from a user-initiated
point. Then the SQP algorithm described above is used tolim@ptimal point.
Calculating gradients for the investment problem in Papisriot easy. One rea-
son is the fact that the objective functigifx) is not differentiable in the whole
of RY. Another reason is the complex structure of summation&(ir. Using
NPSOL, no algebraic expressions of gradients and Hesseedsrio be given.
Instead, NPSOL can make use of finite-difference derivatiidne NPSOL algo-
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rithm can also deal with minor discontinuities if they ar@léded and located away
from the solution. The SQL algorithm described above witiagrge to the global
optimum for convex problems [72]. Since the investment f@wbconsidered in
Paper Il is convex, the algorithm will find the global optinpalint. The objective
function is discussed in Chapter 2 above and the consid@tedieation problem
will be treated in more detail in Chapter 5.

In the above SQP algorithm, the objective functibpn RY — R. If f :
RN — RM M > 1, the problem is anulti-objective optimisation problem
(MOOP). The solution to such a problem does not consist ohgleioptimal
point, but instead a number of points lying on a curve or swrfzalled thé*areto
front. These points all have in common that they moa-dominatedIn short, it
means that no other solution exists where any of the obgstive strictly better
than those on the Pareto front without some other objectuegoequal or worse.
Figure 3.2, taken from Paper 1V, illustrates the princippésPareto optimality.
The objectives along the andy axes are both to be minimised. The solutions 1,
13, 9, 5 and 17 all belong to the first Pareto front. Solutiohalever, is said
to be dominated by solution 5 and therefore does not belotiget®areto front.
Not taking the first Pareto front into account, another, nefenon-dominated
set of solutions can be found. This set is called the secoretd*&ont. In the
same way a number of Pareto fronts can be found. From Fig@ri i3.evident
that the two objectives are in conflict with each other. Thisypical for multi-
objective optimisation problems. Should the objectivessh®oin conflict, at least
one dimension could be omitted. In the two-dimensional dhssrated above,
this would lead to a single-objective optimisation problem

3.2 Stochastic optimisation techniques

The search methods employed by stochastic optimisati@ritighs depend, in
part, upon computational procedures generating a randdaoomme. Therefore
these algorithms produce different paths towards the @btsolution each time
they are run, and in the general non-linear case, conveegearmot be guaran-
teed. However, in most practical applications, proof ofroptity is not the most
important aspect; Instead, finding a solution better thanpasently available
one is usually sufficient.

One of the most widely used stochastic optimisation tealesqs thegenetic
algorithm (GA) [85, 86, 87]. This algorithm is inspired by biologicalaution.
In a GA, a population of candidate solutions to the problernhaatd, referred to
asindividuals, is maintained. Each individual containglaromosomethat is a
representation of a potential solution to the problem. Thm@mosome can, for
example, consist of a string of discrete (e.g. binary) oirdatnumbers. Mixed
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Valid ranges for chromosome genes (alleles)
{L.19}] {1.43 [ {1,4}] {1.4} [{0,10}]{0,10}{0,10},

L

Genes

Chromosome

Example chromosome
L4 21 [3]7[2]1]

Figure 3.3: An encoding scheme for a genetic algorithm (GA) in which dise numbers
are used. An example of a chromosome is shown at the bottone digure.

representations exist as well, in which the chromosomeatosiboth discrete and
decimal numbers. An example of an encoding scheme used &r Fagan be
seen in Figure 3.3. Each part of the chromosome is callgehg and each gene
may take different values, referred to aléeles In this example, only discrete
numbers are used. Since the problem is combinatorial,omsists of a number
of discrete alternative equipment sizes for a refueling@tait is natural to use
a discrete encoding scheme. The problem also containsntieefdir investment,
which is deliberately encoded as a discrete number in ocoddedrease the size of
the search space, for faster convergence.

After the initial population is created (usually randomlg)l individuals are
evaluated. This involves a calculation of the fithess megsuhich is used to rank
individuals with respect to their performance. Usuallg tialculation of fitness
values is the most time-consuming part of the algorithm. WMag the fitness
measure is calculated depends entirely on the problem dt Havo examples of
calculating fitness measures are given in Papers Ill and IV.

When all individuals have been assigned fitness values gimeal replace-
ment is performed. First, the best individual is transi@mechanged to the next
iteration (referred to as generation, and then the remaining individuals are cre-
ated fromselection crossoverandmutation The selection, usually of two indi-
viduals, is carried out in proportion to fitness. The selgd¢teo individuals then
generate two new individuals by blending genes from botthefrt, a procedure
known as crossover. In the simple case the genes are exchiaetyeeen chromo-
somes by cutting the latter at a random crossover point. Tutation is a random,
low probability change to individual genes in the chromoso@rossover and mu-
tation must normally be tailored to the specific problem. Avftthart for a simple
genetic algorithm can be seen in Figure 3.4.

In the problem considered in Paper IV, gradient informatias very hard



20 CHAPTER 3. OPTIMISATION TECHNIQUES

Initialize population

e

Evaluate

1
Comergnee 2~ ¥

_ _ _ 4No_ _

_ |Generational
Select individuals | /féplacement
|

v

c
|

|

|

[ Crossover
|

|

|

L

[
[
[] [
[
[

Mutation

— -

Figure 3.4: Flow chart of a genetic algorithm.

to find algebraically. Alternatively, numerical differémion can be used; such a
technique was employed in connection with the determmggitimisation carried
out in Paper Il. However, in that paper it was shown that foigker optimisation
time periods, the deterministic optimisation algorithmwhich numerical differ-
entiation is an important part, led to unacceptably long potational times and
was therefore intractable. Therefore, in Paper IV, a GA vaesiunstead.

One significant advantage with using a GA is that it does netliaay gradient
information. In fact, GAs only need the fithess measure andlitas be applied
to any optimisation problem where fitness can be quantifieddtition, GAs do
not introduce any requirements on the function that is togiarosed (for exam-
ple, it need not be convex), but it should be kept in mind thx#taeprecautions
may have to be taken for strongly non-linear and discontisufanctions. One
such technique is to increase the mutation rate at the begioh the evaluation
in order for the solution not to get stuck on a local optimunhibstead find the
global one [85]. In all, the GA is a very flexible and easy-sewptimisation al-
gorithm. However, there are some drawbacks. One is the anevtioned need
for tailoring the encoding scheme, and the operators fagsaeer and mutation.
Another, perhaps more serious, drawback is that since trelséor better solu-
tions is stochastic, so is the evaluation time. Occasignathay be better to stop
the current calculation and start from the beginning by tongaa new random
population again. Also, there is no guarantee that the faaohgtion indeed is
the global optimum. However, in practice, these drawbaocksarely significant.
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The need for implementing extra operators is well compeuslay the simplicity
of the algorithm. Since true global optimisation is such edhask, not even the
most advanced deterministic algorithms can guaranteenapty in the general
case. Considering this, the GA is a good candidate for realdoptimisations.

GAs have been extended to the multi-objective case [88].r&belting algo-
rithms are collectively known as multi-objective evolutayy algorithms (MOEA).
These algorithms aim at finding the first Pareto-optimaltfidiscussed above. In
Paper 11, a particular type of the above MOEA, called NSGf81], is used. This
is an elitist non-dominated sorting GA that uses an exptisiersity-preserving
mechanism to keep solutions separated from each othee Sohations are spread
along the Pareto front, some measures need to be taken &wlthi®ns not to clog
together in the same spot. This is done by calculating thamte to the nearest
neighbour, called therowding distance The new population is filled with so-
lutions from one front at a time and in ascending order of orfrirst solutions
from front number one is used, then solutions from front nanto etc. If not all
solutions from a front can be used (i.e. if the populatiorisid to be filled), the
remaining available positions in the new population aredilvith the solutions
having the highest crowding distance, i.e. lying furthgsrafrom each other.
The NSGA-II algorithm can be summarized as follows

1. Randomly generate pareft, (|P;| = N) and offspring@;, (|Q:] = N)
populations.

2. Combine parent and offspring populations to farm= P, U Q;.

3. Evaluate the combined populatid®y and sort it into a nhumber of non-
dominated frontsF;, i = 1,2, ..., 7.

4. lteratively create a new populatio®,; < Py U F;, |Pyy| + |Fi| <
N,i=1,2,...

5. Carry out a crowding distance sorting on the remainingtdmot included
in P,,; and include the most widely spread solutions uijl ;| = N.

6. Create offspring populatiof;,; from P, ., by crowded tournament selec-
tion, crossover and mutation.

7. lterate Steps 2-6 until convergence.

3.3 Dynamical optimisation

Thedynamical optimisation problem is defined as the problem of minimising a
cost function/ over a given time period by finding the optimal control trageg
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u. Thus, this type of problem is also referred to as an optiroatrol problem
(OC) [90, 91, 92]. Common cost functions include energyl,faed time. The
dynamical system can be mechanical, electrical or any dyiperthat can be de-
scribed mathematically. In this thesis, investment pnoisl@re considered. The
continuous-time deterministic optimal control problenm ¢ze defined generally
as

min J, where J:@(w(tf))+/th(ac(t),u(t),t)dt, (3.12)

u(t) to
stz = f(x,u,t),
c(xz,u,t) < 0,

whereJ is the objective functionf are the state equation constraintgre the
path constraints andis the control vector. The objective function consists af tw
parts:®, a cost based on the final time and state, and an integral deygeon the
time and state histories. In addition there may be simplentiswn the state and
control variables, i.e.

< = <z, (3.13)
u < u < Uy,

and also boundary conditions amandw.

The above problem also has a discrete version, in which tagnal is replaced
by summation. The problems in Papers Il and IV are both espiem the discrete
form, mainly due to the type of data available and for simpfiof calculation.

The optimal control problem may be solved by any of the follgyfour meth-
ods:dynamic programminghe indirect method, the direct method, or simulation-
based optimisation.

The dynamic programming approach makes use of Bellmamigipte of op-
timality to solve the problem by backward induction [93]. €Ttesulting partial
differential equation is very hard to solve, except in vatdnate cases.

An indirect method aims at fulfilling the necessary condisiéor an optimum,
the Euler-Lagrange equations and the adjoint equatiomsg wariational calcu-
lus. Finding these expressions requires calculation ofigres and Hessians,
which usually is cumbersome. In addition, the indirect rodtis sensitive to the
choice of starting point, i.e. the first estimate. A poortatgrpoint may result in
divergence or wildly oscillating trajectories.

A direct method [90] uses a sequence of points to approxithatstate and
control variables. The sequence may be a piecewise polyatexpansion. When
these approximations are inserted into the objective fan&nd constraints, the
result is a static optimisation problem that can be solvedguthe methods dis-
cussed in Sections 3.1 and 3.2. Using the direct method [B@],integral in
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the objective function in Eq. (3.12) can be treated as antiaddi statez,, ,; =
L(z, u,t) with the initial conditionz,,,1(ty) = 0. Itis thus possible to replace the
original objective function with one of the type = ®(x(t)). Now the interval

to to ty is divided inton, segments wherg, is the time span of one segment.
Furthermore, letting/ = n, + 1 be the number of points in the interval, the state
equations can be approximated with any numerical integratiethod, i.e. Euler,
Trapezoid and Runge-Kutta. For the simplest case using e Enethod, one
may define(, = x,.1 — xr — hi fi, and the original optimal-control problem in
Eqg. (3.12) can then be expressed as an NLP problem in eachip®ii3 . .. M of

the time segments in the following way

min J, where J=®(xy)
(w1, Y1, urM,Ynm)

(€1, G2, sCm-1) = 0 (3.14)

(c1(x1, w1, t1), co(@2, Ug, ta), ... epr(Tpr, wpr, tar)) < 0.

In this equation, th&, (s, ..., {1 are the deviations, also referred to as the
defects, for the dynamics (augmented with the integral endbjective function

in Eq. (3.12)) approximated by the numerical integratiorthrod at each point.
(c1(x1, w1, t1), ea(@2, g, ta), ..., epr(@ar, wpr, tyy)) < 0 are the original inequal-
ity constraints expressed at every point. The result of ftieosation isM control
and state vectorg andy.

This optimisation problem is of the static NLP type and carsblred with
the techniques discussed in the previous sections. Thégpnatpes, on the other
hand, havel/ — 1 times more variables than the original dynamic optimal cmnt
problem. For the case of equality constraints and boundargtiions, the number
of variables equald/ — 1+ M + 2 = 2 x M + 1. The method presented in
Eq. (3.14) is also referred to as the multiple shooting metho the case where
ns = 1, itis called a single shooting method. In the case of a lotmgalt ; — ¢
and small time constants, the resulting static problembé@tome hard to solve.
In Paper Il the above direct transcription method was used;CGhapter 5 for a
further discussion.

The simulation-based approach uses a totally differerinigcie to arrive at
an optimisation problem that can be treated as a static ose, khe system under
study is simply simulated for the entire simulation periddring which the cosf
is also calculated. Based on the value/dd static optimisation algorithm adjusts
the control vectok in the direction of lower cost. The simulation-based teghgi
can be described as follows

1. Find a feasible control vectax.

2. Simulate the system using the control veaiand calculate the cost
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3. Change the control vector for lower caktising a static optimisation algo-
rithm.

4. Repeat Steps 2-3 until convergence.

The static optimisation technique in Step 3 can be of any.kiowever, a GA,
as described in section 3.2, is particularly suitable.

3.4 Stochastic dynamical optimisation

In any real system, noise is present. In the systems distussleis thesis, noise

is represented as an uncertainty about future developmbistfact motivates the

usage ofltochastic dynamical optimisationtechniques [94, 95, 96], which is a
dynamical optimisation technique, as discussed abovéieadp a problem under

the influence of a disturbance. The disturbance can be egaiz a stochastic
variable with a predefined probability distribution. Thediete-time stochastic
optimal control problem can be defined generally as

N-—1
min J(U), where J(U) = > ke, Xi, U, W) + T( Xy, W)
k=0
st Xenn = f(k, X, Uy, Wy) (3.15)

(X, U) < O0Vk=1,...N,
where W is an independent random disturbaneék, X, Uy, W}) is the cost
associated with each time stepl'(X y, Wy ) is the terminal cost and, (X, U)
represents simple limits of the state and control variables

The above perturbed optimisation problem can be solved lifiads analo-
gous to those used for the unperturbed problem in Sectigrt&aBis by dynamic
programming stochastic programmingor the simulation-based approach. The
solution methods generally work in the same way as in the niumed case.

The differences compared with the unperturbed case arentkta¢ perturbed
case the objectives are optimised with respect to expectleets. The result is
one control strategl that minimises the expected value (the mean value) of the
objectives. The definition of the disturbance can eitherrdedyaical, i.e. using
data from the distribution used, or scenario-based, iiagus number olsam-
plesfrom, e.g. a probability distribution. In the former case tptimisation is
done analytically and in the latter case it is done numdyichd Paper IV, several
scenarios were used for generating samples after whichcreaso-based opti-
misation method was applied. Using this technique, eaclplaocorresponds to
one possible future development of the disturbance, nehis case, the number
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Histogram for investment strategy 89 in scenario 3, calculated for scenario 1. Histogram for investment strategy 89 in scenario 3, calculated for scenario 1.
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Figure 3.5: Examples of histograms representing the hydrogen pramuctdst (left
panel) and unsatisfied demand for hydrogen (right panela fgiven solution. The his-
tograms were generated using 100 samples.

of vehicles arriving at the refueling station. The solutisthe expectation value
of the optimum for all samples.

In Paper IV, the problem is two-dimensional and, therefecas.J. Applying
all samples in a given scenatiwill result in a distribution of the two-dimensional
objective function/. In essence, for each solutiéh and set of samples there is
one distribution for each dimension in the objective fumecti/. In Figure 3.5
an example from the hydrogen and hythane refueling caseoisrsh The two
objectives are hydrogen production and total hydrogentigfieal demant Each
guantity has been calculated for one solutiénand for all available samples.

2In Paper 1V, 100 samples were generated for each scenario.
3As shown in [97], the occurrence of an unsatisfied demandtismmmmon.






Chapter 4

Assessing the future

This thesis focuses on long-term planning and optimisaporcesses that require
an assessment of the future. Such assessments can be @tadifeerent ways,
and in this thesis (see Papers Il and V) the preferred methsdbeen to generate
a number of possible outcomes, referred ts@narios A number of probability
distributions are associated with each scenario. Thus amcenario has been
defined, a large number of samples can be generated, eaelerping one pos-
sible future outcome. Needless to say, such scenarios lwglys have a certain
degree of arbitrariness.

Since the long-term effects of a scenario often may dependgly on what
happens during the first few time steps, short term predicifdime series, based
on past data, is certainly relevant. Thus, time series ptiedi (TSP), considered
in Paper lll, can be used for reducing the prediction unaesta

4.1 Forecasting

Forecasting time series is common in economics [23, 98hdriechnical domain
it is part of system identification [99]. The underlying asgiion is that the
data series have an internal structure that can be ident#itter identifying this
structure, a procedure known as model fitting, a predictiothe future can be
made. In practice, the model is selected first, after whiehd&ta sets are used
to estimate its parameters. Clearly, this requires thatnmbdel can represent
the data. If this is not the case, another model has to be ftundgh structure
selection, i.e. by finding a model with a more suitable ind¢structure, which can
then be tuned by adjusting the values of the internal pamusieb as to reduce the
error over the data set.

Another issue is the amount of noise present. White noisglpsadefinition,
not be predicted. Other types of noise can, to a certain aed dmited degree,

27
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be predicted. In this case one can use models that have a panisallowing

for multi-step prediction's[99]. For one-step prediction the expected increment
is zero in case of white noise, and the estimate is equal toothtained from a
model without noise. However, the genuine information pathe time series is
deterministic and can, provided a good model is found, bgestilo successful
prediction.

Traditionally, methods likéhe naive methgaxponential smoothingndauto-
regressive integrated moving averag@dfkIMA) have been used for time series
prediction [22, 52]. The naive method estimates the nexteval the time series
by the present one. For very noisy time series, it is hard & thee trivial pre-
diction obtained from the naive method [100]. The ARIMA tatfues consist of
three parts: an auto-regressive part, an integrating pdraanoving average part.
Exponential smoothing is a special type of ARIMA model. Mogeently, artifi-
cial neural networks (ANNSs), of which feedforward neuraimerks (FFNNs) and
recurrent neural networks (RNNs) are examples, have beshind SP [25, 101].

In Paper lll, a novel kind of recurrent ANNs calleliscrete-time prediction
networks(DTPNs) was developed fdime series prediction This study was
a continuation and an improvement of earlier work on TSP gusiaural net-
works [26]. A DTPN contains inter-neuron connections aslaglconnections
to the inputs. In a DTPN, any neuron may be connected to argr aguron, and
to itself. Furthermore, each neuron has an individual dgjuggunctions which
is (in principle) arbitrary. In Paper 11l the logistic funah

1
= 4.1
01 (Z) 1 + e,cza ( )
wherec is a positive constant, and the hyperbolic tangent
o9(z) = tanh ez, 4.2)

have been utilized. Since no gradient information is needdlke training proce-
dure, no restrictions exist on the functions that can be.uBedrefore the squash-
ing functions

03(2) = sgn(z), (4.3)
and
tanh(z +¢) if 2z < —c
o4(2)=1¢ 0 if —c<z<c (4.4)
tanh(z —¢) if z>c¢
were also used. In addition, the function
. CzZ
1+ (c2)?

1A multi-step prediction is defined agt — n), z(t —n +1),...,z(t) — 2(t + k), k > 1.
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w (interneuron weights) | w" (input weights) | b | ¢ | k (sigmoid type)| EOT

Figure 4.1: A chromosome encoding a DTPN as used in Paper Ill.

was used. Even though DTPNs have arbitrary connectionseleetweurons, the
order in which the neurons are updated is fixed, and given lopked evaluation
order tags (EOTSs), one for each neuron. In each time stepgilv®ns with lowest
EOT are updated first according to

(t + 1) =0 (b + in:wm[ + sz]xj > ) (46)

7j=1

Wherewg1 are the input weightsy;; the interneuron weights, arig is the bias
term. I; are the inputs to the network which, in the case of time sgniediction,
consist of earlier values of the time serigét), i.e. [;(t) = Z(t — j + 1) For
neurons with the second lowest EOT, the equations look theesaxcept that
z(t) is changed ta:(t + 1) for neurons with lowest EOT etc. Finally, the output
neuron (arbitrarily chosen as neuron 1) gives the follovaatput

nt+1)=o (b1 + Zw‘“] )+ wiay () + > wija(t+ 1)) . @)
j=1 j=2

since, at this stage, all neurons except neuron 1 have betatagy Like other
RNNs, DTPNs are capable of short-term memory, a featuretwibignportant in
time series prediction (see also Paper IlI).

The optimisation of DTPNSs is carried out by means of a geradgorithm
(GA), which evolves not only the parameters of the netwoukt dso its structure,
i.e. the number of neurons and their EOTs. The encoding selused for evolv-
ing DTPNs is shown in Figure 4.1. Note that the sigmoid typés encoded by
the integert in the chromosome.

In Paper Ill, DTPNs were evolved for one-step predictionha Fed Funds
interest rate and US GDP, after first rescaling the data taghge[—1,1]. A
summary of the results is given in Table 4.1. As can be seeharigure, the
prediction results (average prediction errors) for the N$®ere better than those
of the other methods tested.

The DTPNs have been used for one-step predictions only. @fep multi-
step predictions are possible, in principle, but will irtably result in inaccurate
predictions due to the effects of cumulative errors [51,]102
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Data set eN €ES €ARMA EDTPN
Fed funds interestrate 0.2018 0.1901 0.1887 0.1837
GDP 0.1771 0.1490 0.1473 0.1305

Table 4.1: Average errors for one-step predictions carried out for tmacroeconomic
time series: the Fed funds interest rate and the US GDP. Tie $hows the minimum
errors over thevalidation part of the data set, obtained using naive predictigy),(expo-
nential smoothingegs), ARMA (earnma), and DTPNs{pTpn). Only the results for the
very best DTPN are shown.

Also investigated were predictability measures, i.e. messsof the accuracy
of an individual prediction. Several empirical measuresavavestigated, as well
as one analytical measure. The empirical measures invalifistent ways of
augmenting the DTPNSs to incorporate the predictabilitye @mount of genuine
information in a single time series can be analyticallyreated using random
matrix theory [103, 104]. If the original observations amtined within the
Tx1 vectorx(t), aT —m x N delay matrixZ can be formed where the columns
are delayed observations, iz€t), z(t — 1), z(t — 2) ... z(t — m). The parameter
m represents the maximum delay and should be chosen to cevénta period
of any cyclic behaviour. In the process of forming the delagtnm, m rows at
the end ofZ will lack values and hence onlyy — m rows can be further used in
7. The number of columnsy, equals the maximum delay numbert, plus one
initial column. In order to use’, each column has to be normalised to zero mean
and variance 1, which is done using

Zmn — @ Zmn + b, (4.8)
where
—m
a = — — (4.9)
\/ S22, - 1/< —m) (1" Zin)?
and .
>imt Zin
= &=l T 4.1
b = (4.10)
The correlation matrix(, is then defined as
C = lZTZ (4.11)
=7 ) )

Furthermore, the eigenvalues@fcan be used to estimate the information content
by comparing with the eigenvalues of a random matrix withséwme dimensions.
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Figure 4.2: Information content in the US GDP time series using randortrimtne-
ory [104]. The remaining part is noise. For the above casaléh@y m = 12 and the
window size 32. The total information content is calculateded on the eigenvalues for
the full, non-windowed, correlation matriX.

Such a matrixX [m x n], will, if it is scaled according to Eq. (4.8), have a density
of eigenvalues according to

_Q VP = N = Ain)
2 pY

p(A) (4.12)
for A € [Amin, Amax], @nd zero otherwise, in the case wheten — oo, and
where@ = n/m > 1[105]. In Eq. (4.12), the minimum eigenvaluels,;, =
o?(1 — 1/4/Q)? and the maximum eigenvalue,., = o%(1 + 1//Q)*. If the
eigenvalues of’ lie outside the rangB\in, Amax, the time series(¢) contains
real information. A numerical estimate of the minimum andimaum eigenval-
ues for matrices of finite size, can be obtained by taking timemum and the
maximum eigenvalues obtained from a large number of gesd:random matri-
ces of the same dimension@s

A way of estimating the percentage of information conterttyiscomputing
100 A max /N, WhereA,,.,. is the largest eigenvalue of the correlation marixBy
making use of a moving data window, the local informationteahin time series
may be estimated. Figure 4.2 shows such a calculation fdd$:&DP.

All results on the predictability measures were, howevegative. Compar-
ison between the analytical and empirical candidate measshhowed no corre-
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lations. The reason may be that the DTPNs do extract mosteoinformation
available in the time series.

4.2 Decision-making under uncertainty

Decision-making in industry as a scientific discipline canrikgarded to be a
part of operations research (OR) [106, 107, 108]. OR origmé&om the mili-
tary sector, where it was used to make better decisionsgnjagistics and war
tactics [109, 110]. Nowadays OR is widely used in the industrraise effi-
ciencies and optimise performance. Here it is also known asagement sci-
ence [111, 112]. The problems that occur in OR are real-wprttblems and
are often hard to solve using traditional deterministichoéds. Therefore it is
not surprising that the efficiency of stochastic optimsatiechniques was early
recognised [113].

An important field where OR has contributed is decision-mgkinder un-
certainty. In the industry, strategic decisions have to ldemand in all practical
cases they are taken under uncertainty since they invoeaigiing, or guessing,
what will happen in the future. Since it is generally veryfidiflt, not to say im-
possible, to make correct long-term decisions intuitivéifys is an area where
much can be gained by applying advanced analytical tecbsiffil4, 115, 116].
Application areas include logistics [117], financial instrents, investment plan-
ning [11], risk management [118], water pollution probldiis9], water resource
problems [120] etc. In all of the above areas, stochasticnigcies, like GAs,
nowadays are common ways of solving the resulting optinaisgdroblem.

For an investment decision problem, each decision to invéktin the op-
timisation framework, result in one decision period. Inqbi@al cases there is
often a pre-defined number of occasions when investmentsasble, e.g. once
a month or once a year, something that leadssiecaiential decision probleriihe
problems in Papers Il and IV are both sequential decisioblpros. In addition,
the problem considered in Paper IV is also stochastic. Euribre, the decision-
making can involve an inner loop where a number of decisioasreade within
each outer decision period, leading to two stages of dew@si&or a production
company, the first stage typically involve decisions on gtreents in production
capacity and the second stage regards decisions concgmudgction planning
given the resulting constraints from the first stage. Thest@t problem in Paper
IV is also of the above two-stage type and is solved by the @isepoe-defined
strategy for the first investment stage and a combinatiotostd-loop regulation
and a pre-defined strategy for the second production stage.

2The term closed-loop regulation is used in the standard asagiefined in control theory.
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Decision-making under uncertainty can be modelled &askov decision
process(MDP) [121]. In such a process, the decisions taken at aineptant
depend only on the state at the previous time point and notatessfurther back
in time. The MDP is a discrete-time stochastic control psscihat propagates
through a series of states. For each state the decisionrriades actions based
on the information given by the previous state only. Nextioglsastic transition
function determines probabilities for transition to thexinstate. For each state
there is a reward, which depends on the new state. In Papénd\investment
decisions are parametrised and calculated in an open-lagpiw. they are pre-
defined. Uncertainties in the form of hydrogen and hythamesa®l are dealt with
in the second stage, where the amount of stored hydrogeptiaka constant level
by adjusting the production. This second stage is a prodebke dlarkov type.

The use of optimisation for finding optimal future investrnetrategies is a
decision that has to be carefully considered for each iddadicase. As with all
mathematical tools, optimisation methods also requireaatiication of the input
data, which is by no means trivial, since some data conceiigirons of future
sales, prices etc. Other factors such as availability dfeskpersonnel and data
regarding the system under study also have to be taken inobmat The methods
used in Papers Il and IV are, from a mathematical point of vi@sy robust. The
sensitivities to disturbances can be determined by peatiom analysis, a tech-
nique used in Paper Il. The quality of the optimisation ressdépends, of course,
on the quality of the input data. On the other hand, the imeest methods pre-
sented in Paper Il and IV are meant to be used to update thstineat strategy
as soon as new and better predictions are found. In this basgptimal next in-
vestment decision can always be found, given the best alaifature estimates
at the time of calculation. It should also be stressed thaute of GAs for in-
vestment planning, as in Paper 1V, reduces the calculaffort since no gradient
information is needed. It is the conviction of the authott tiathe case of a com-
plex system and as soon as the objectives are quantifiablprésented methods
are very powerful tools and will prove useful in many appiicas in addition to
those discussed in this thesis.






Chapter 5

Case studies

This chapter provides a background to the case studiesrpeesin Papers |, 1l
and IV. Along with the general background, some details taditrom the papers
are given as well.

The three cases are (1) the cement production model, (2)yth@den refu-
elling station infrastructure investment optimisatior §8) the combined hydro-
gen and hythane infrastructure investment optimisation.

5.1 The cement production case

In the cement production case considered in Paper |, a hitgxiple model of a
cement production factory has been built. The model has bgedhin several dif-
ferent calculations, including process optimisationsemdronmental assessment
of new energy sources. The life cycle inventory analysisljlrf@del consists of
a foreground system which defines the on-site productiom winch the com-
pany has full control, and a background system comprisingh@ased services
and goods, see Figure 5.1. A more in-depth discussion ofrthuption facility
is given in Paper | and in [45].

The raw materials, i.e. different sorts of sand, are trarteddo the production
site and ground depending on type. They are then mixed inaeig@roportions
and burnt to clinker in thelinker production systemFor the burning process,
fuel is, of course, required, and it may consist of coal, pé&ecor an alternative
fuel. All fuels are transported to the site, ground and mixezbrrect proportions,
before entering the burner. The produced clinker is therethixith gypsum (and
possibly other materials), further ground, and stored asce.

The problem is to find the ratio of raw materials, fuels andatiditional gyp-
sum to produce cement of a certain quality. The quality issuesd using the fac-
tors indicated in Table 5.1. In addition the approximate atary costs throughout

35
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Figure 5.1: LCI model of the cement production line.

the production line must be calculated. Since the purchasts of the raw mate-
rials and fuels are known, the production-related costd&chepiece of equipment
in the line can be estimated and added to the product flow. Tdwehtan be
used as an aid in calculations for new types of raw materiia¢éds and internal
settings, and for changes in the layout of the productios lin addition to static
solving, dynamic simulation and optimisation can be com®d. It is therefore a
requirement that the model should be modular and highlyldlexi
One option would be to make a standard LCI model. When a stdridzl

is carried out, the linear technology matrix modé) described in Section 2.1 is
sufficient for describing the technical production systeimge the underlying pro-
duction system is described as static and linear. Usinditigar description, only
one type of calculation is made in an LCI, which is the norsation to the func-
tional unit, obtained by solving a linear equation systerne @eveloped mathe-
matical LCI methods are designed to achiemdy this normalisation [31, 32, 34],
something that limits their usefulness. At times it is da&lsie to make extensions
to this type of LCI model. One such occasion is when the inftgplysical be-
haviour of the production system is strongly non-linear wkeen as a mapping
from resources and emissions to the product. A linear LClehogpresents in
this case a linearisation around a specified point and mégta to unacceptably
large deviations in the calculated resource use and emssaédeased. Another
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Table 5.1: Cement product quality indicators. The notation indicavesyht percentage
of the specified material.

Name Symbol Description
. . | _ 100CaO
Lime saturation factor LSF LSF = 55561 141.0.707Fe30;
- . o SiO
Silica ratio SR SR = g5 Fe:0s
Alumina ratio AR AR = #kGs
ea2U3

occasion occurs when dynamic aspects are relevant, for@ganhen closing
down and starting up a production line in connection withntenance. In the
situations just described, another modelling approactkimgause of non-linear
and dynamic models, is needed. In addition, other typeslotilzdions may be
desirable as well. Examples include optimisation, simaiedver time etc. In or-
der to fulfill the requirements, one needs a higher degreexbility in the model

than is given by the LCI model. In short, the modelling apptohas provide the
model with enough data to represent the underlying systemciorrect way and
this data has to be arranged in such a way that it is possibteate the desired
calculations using the model.

In [122] the nature and effect of some different types of aeditysare dis-
cussed. The concept of causality is further applied to LC|&@). To recapitulate,
there are two types of causality of interest: (1) physicalkeadity and (2) compu-
tational causality. The physical causality is the causecetonnection inherent
in nature. The computational causality is the order in wiainlequation system
is solved. While the former is governed by the laws of natthe, latter is the
choice of the modeller. In [50], it was found that, by remaythe computational
causality from the model, advantages in flexibility can beieed. The resultis a
so called acausal [122] or non-causal model. In effect, thigyethat is normally
regarded as the model can be split into three parts, namely:

e A computationally neutral (acausal) model, i.e. a model thaps the in-
terpretation of the production system onto a mathematarahdilation, but
does not include any specific problem to be solved.

e A problem formulation, i.e. a description of which paramgtshould be
calculated and an explicit list of which parameters sho@dhéld constant
during a particular calculation as well as numerical valtegseach such
constant parameter.
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e A method of calculation. This part can be considered as agbaine prob-
lem formulation.

In addition it was found that the modularity of the model, ttee flexibility with
regard to both change and exchange of parts within the mcaiebe enhanced by
using an object-oriented modelling language in conjumctidith physical entity
modelling. The intention with the latter is to keep real pghgkentities together
for ease of comprehension and transparency. This way of iimaglalso consti-
tutes a natural way to keep parts that are separate in realigeparate objects
in the model, so that the model resembles reality or a seitedgresentation of
reality. To summarise, the following requirements are aered:

e A computational acausal model that contains the structutlecanstants of
the system, but does not contain any information regardamgpaitation.

¢ An object-oriented modelling language that makes use a@sdation and
inheritancé.

¢ A physical property modelling approach that makes it pdseditb map the
real physical structure onto a similar model structure.

However, there are drawbacks with using an acausal modey. Mathematical
model consists of a number of equations. In the computdtionausal case,
e.g. block diagrams and state-space models, these equat®ordered in a spe-
cific way to achieve the desired result. In the computatigredausal case the
equations are not ordered in any specific computational viastead they can
be regarded mathematically as a number of equilibrium égusiconnected to
each other, making them harder to understand. For modelbysigal systems
which are based oflow semantics i.e. correlation between the general variables
intensity and flow, the model representation can be basedermy flow and is
usually relatively easy to construct. For the type of flow misdised in LCI there
are also physical laws to consider, but not in the form ofrisigy-flow related
connections. Under these circumstances acausal moddiesdructured in vari-
ous ways depending on the application, and therefore sudelsare difficult to
make both consistent and sufficiently general to reach adeginee of flexibility.
Another disadvantage is that in order to use an acausal madigdicated soft-
ware for sorting out the equations and ordering them contipuialy is needed.
In practice this is rarely a limitation, since such softwaravailable.

As an illustration of the use of acausal models, considerstimple resistor
described by

'Encapsulation and inheritance are central concepts incobjéented programming, see
e.g. [123, 124, 125] for details.
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Figure 5.2: The separation of model and problem formulation that canchésged by
the use of acausal models.

Is it the current flowing through the resistor that causesvifitage drop or the
voltage drop that causes the current? What is the physioakdity of the resis-
tor? Of course the order of calculation depends on the quresati hand. If one
is interested in the voltage drop, one would use the compugdtorder given in
Eqg. (5.1). On the other hand, if one is interested in the otymne would re-order
the equation accordingly. If Eq. (5.1) is interpreted asageshent of equilibrium,
it can be regarded as an acausal model. A problem formulatight be to cal-
culate the voltage drop while keeping the current at a cohstue. A suitable
method of calculation is then any static linear equatiovesol Moreover, the
above example is a physical system and is based on flow sesahtithis case
the voltage is the intensity and the current is the flow [56}. the simple example
discussed, the computational aspects are obvious and odedtimer formalisa-
tion. However, in cases with more than, say, 100,000 egusitimuch time can
be saved through the use of acausal modelling techniques.

When the project reported in Paper | was carried out (fall9)98nly a lim-
ited number of modelling languages and software programedizulation were
available and able to fulfill the requirements. Among themré¢hwere OmSim
(Omola) [126], Dymola (MODELICA) [48] and Ascend [46]. Omiand Dy-
mola are specially made for modelling of physical systenashteave a built-in sup-
port for flow semantic. Since the system considered doesawa any intensity-
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flow dependency, it was decided not to use these prograngu@aes). Ascend
is both a calculation software and a modelling language aasl aviginally de-
veloped for applications within chemistry. However, it dast be described as a
mathematical system modelling tool and is very flexible ifirdeg connections
and hence the structure of the system modelled, which is &éne reason for using
it.

The model was built in a bottom-up manner according to Papestould be
noted that the model is deliberately made redundant. In cassts redundancy
has a negative effect, but here it is used to enhance theifigxifhe numerical
parameters in a calculation can be divided into the follgategories:

e Constants. These are set, once and for all, when the modailtis b

e Locked variables. Parameters set to a constant numericed far a certain
calculation.

e Free variables. Parameters that will be calculated by tmeenigal algo-
rithm.

The number of parameters in each category depends on thiféispatculation
considered. Providing information regarding these sgitis part of the problem
formulation. In the model, the information needed for sfy@eg one parame-
ter can be supplied in a number of ways. An example is the dignés in raw
meal composition. These can be set by specification of atesolasses or rela-
tive masses (percentage). The model contains the necesatrgmatics to relate
these parameters at the time of calculation. At any givemr tiomly one of the
two ways of specifying the parameter is used. The resulsgmed in Paper I,
is a highly flexible calculation tool for the cement prodoatiprocess that has
been used by Cementa AB, for several different purposebolild be noted that
the entire model of the cement production line was latersfiemed to MODEL-
ICA [127].

5.2 The hydrogen infrastructure case

The main task for the hydrogen refuelling station is to disggehydrogen to ve-
hicles. Since the incentives for using hydrogen are enuii@mtal, an important
question to consider is where the hydrogen is to be produesmtiucing the hy-
drogen is probably best done at large, centralised pramtuéicilities. It is then
easier to take care of the created emissions, @®.. The problem is to dis-
tribute the hydrogen to the local refuelling station. Inertb do so efficiently,
the hydrogen gas has to be highly pressurised, which is siygeand can also



5.2. THE HYDROGEN INFRASTRUCTURE CASE 41

be dangerous. Another consideration is the vulnerabilitthlio sabotage and
to accidents. In this thesis an alternative solution cosipgi local production
of hydrogen using dydrogen reformer, i.e. a device that produces hydrogen
from hydrocarbons, is investigated. The input to the refaroan be any type of
methane gas and may originate from fossil or renewable ressuOne disadvan-
tage is that the reformer will produce considerable amooint®), which will not
be easy to take care of. Probably it has to be released intttih@sphere. When
the natural gas comes from a renewable source of energy tfeomtibution of
CO, is nil. One obvious advantage with local production is thatiunal gas is
considerably easier to transport than hydrogen gas. Iiitfact is already a rather
small but growing number of natural gas refuelling stationSweden [128]. A
hydrogen production and refuelling part can then be add#uktalready existing
natural gas refuelling station. With such a refuellingistatit is also possible to
dispense natural gas as an intermediate alternative.

If the refuelling station is equipped with fuel cells, it calso be used as a lo-
cal electrical power station. This alternative might befulse remote locations.
When hydrogen is produced from renewable energy sourcesgiit also be an
environmentally friendly alternative. If the refuellingption is located in a place
where electricity from the grid is cheap, it can be equippéith &n electrolysis
part that can produce hydrogen gas directly from elecyridit this case it is im-
portant to keep track of how the electricity is produced. &gih by producing
electricity from coal and then using electrolysis to praglbgdrogen is not, how-
ever, a good environmental solution. In addition to the bgen reformer, the
refuelling station layout that is considered in Paper Ibalsis a local fuel cell
and an electrolysis plant. Figure 5.3 illustrates optiowgstigated in this thesis.
The result is a refuelling station that is very flexible innbesrof resource use and
energy production.

The equipment for a hydrogen refueling station with the a&dayout is more
expensive than present-day petrol station parts. In aatdinot all of the con-
figurations are suitable for specific conditions. Under ¢heiscumstances it is
important to find the most profitable configuration for thecsfie location, the
estimated number of customers, and general technical abetcal develop-
ment. The problem is to find the most profitable configuratids.described in
Paper Il, this problem is equivalent to finding the least egpge mean production
cost for hydrogen. In Paper Il, only the core parts (the paittsin the shaded area
in Figure 5.3) are part of the optimisation. The remaininggean be dealt with
separately, as discussed in Paper II.

In reality the choice of equipment is limited by supply. Lie¢tset of available
equipment, which consists of a finite number of sizes for eaghpment type, be
denoted byC and the control sequenegt) be a vector of equipment sizes such
thatou(t) € C andu(t + 0t) > u(t), vVt wheredt is a small time step. The
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Figure 5.3: Refueling station layout. Natural gas is reformed to hyédrogt the site and
stored for delivery to vehicles. Itis also possible to proglhydrogen from electricity by
electrolysis or electricity from hydrogen using a fuel cell

implication is thatu is only allowed to increase and to do so only with specific
increments, namely those {@. Further letf(u,x, w) be the description of the
core of the refuelling station in state-space form where accumulated volume
in each piece of equipment ardis the hydrogen refuelling demand. The most
general form of the problem of finding the most profitable agunfation is, in the
continuous case,

min J = c(x(t),u(t), w(t))

u(t

stx = f(x(t),u(t),w(t)) (5.2)
0 < x(t) <u(t),

wherec is a cost function described in Paper Il and further disadiss8ection 2.1
in this thesis. There are two major difficulties in solvingsthroblem:

1. The problem is defined over the entire investment perio20ofears. At
the same time the assumed filling curve for hydrogen has adiiepeof one
hour. Dividing the interval of 20 years into one hour segraeviuld lead to
2 x M + 1 = 350,401 variables, as is discussed in Section 3.3. This would
make numerical solving of the resulting non-linear optetisn problem
hard, not to say impossible.
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2. The control sequenae can only increase in steps that are parCofThis
would make the problem discretein Discrete problems are combinatoric
and in general harder to solve than continuous ones [129].

In order to solve the problem stated in Eq.(5.2) it is obsgat, to be able to
satisfy the hydrogen demand, the first investment has to gldae initially, at

t = 0. Consecutive investments can be divided into separates.c&&ace the
desired output, the filling curvé,, is given for one weekl(8h) and then scaled
using the S-curvé, it is sufficient to consider only one week for each investmen
The S-curve is a purely exogenous estimate of the numberdrblggn vehicles
using the refuelling station and is defined as

1

R(t) - 1+ e Blt-Tx)’

(5.3)

wheret is the time from year 2010, the S-curve inflection point anfd the slope.
For values of the constarils and B, see Paper Il. The week to consider for each
investment is when utilisation is at its maximum, namely wesek right before
the next investment. At these points in time, the equipmenised at its maxi-
mum capacity and, in order to satisfy the increasing demanmw investment
in capacity has to be made. By parametrising the(setsing a scaling function
Peq(Seq) (EXplained in Paper I1), where, is the size of equipment, the problem
will become continuous im(t).

The driving signal for the fast dynamics is the filling cunaalf,,. This curve
is given for one week with the time step of one hour. The irdkigrthe objective
functions in Section 2.1 can therefore be replaced by a sulso, Ahe discrete
version of Eqg. (5.2) can be used.

Using the direct transcription method in Section 3.3, trsaiiteng NLP prob-
lem (see Section 3.1) becomes, in the single investment case

minJ = ¢&(X, ug, W)
ug

StCk = Xk+1—Xk—f<Xk,uk,Wk):0 (54)
0 < xp<up, k=1,....M—1,

where(,, are the defect constraints and = 168 the number of steps. Note that
in Eq. (5.4), the step length is one hour. Considering thatdgymamics involved
is of the first order and is stable, the multiple shooting radtban be replaced by
a single shooting one, which would make the problem easm&oltee numerically.
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The above defect constraints can be replaced by a cumusathmenation, giving

minJ = E(Xk,uk,Wk)

ug
k

s.t.x, = pr (5.5)
p=1

0 S nguk, kzl,...,M—l,

This NLP problem can be solved using the methods in Sectibn 3.

In Paper Il two cases are considered: (1) variable utibseds in Eq. (5.5) with
extra requirements on initial amount of hydrogen storedmertbdic maintenance
and (2) constant utilisation, which is a special and simpsse of variable utili-
sation. In the variable utilisation case, the chosen speoiaditions are 100 kg
hydrogen storage initially and at the end, and a weekly siopmfintenance from
hour 75 to 87 during the week. Optimisations are done for #s=g of one and
two investments during the investment period. The resyjtroblem formulation
is

minJ = ¢&(Xy, Uy, W)
ug

k
St.Xpsp = Z(l’és,p—xis,p)

p=1
87
0 = > 7., (5.6)
p=T75
Thsy = 100
Ths,1 = Ths,M
0 < x,<u, k=1,....M —1,

The data resulting from the optimisation are (1) the sizeheféquipment, (2)
the running pattern of the facility, and (3) the price andizdtion curve for the
hydrogen produced. Figs. 5.4, 5.5 and 5.6 show some of thésa@s the case of
two investments. The complete results are given in Paper 1.

The problem in Paper Il is on the edge of what is possible teesolf the
number of investments becomes too larged in the variable utilisation case),
the computational time becomes prohibitively long.

5.3 The hythane infrastructure case

The hythane and hydrogen refueling station is a development of the presly
discussed hydrogen refueling station. The differencelearayout is the absence
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Figure 5.4: Variable utilisation case, two investments; throughput stored hydrogen:
Investment 1 at t=0.

Hydrogen reformer output 2 [kg/h]
60 T

50
40

30

kg/h

20

101

-10
0

24

36

48

60

!
72 84

96

108

120

132

144

156

time [h]

Hydrogen stored 2 [kg]
1000 T T T

800 q

600 - .

kg

400 - n

0 I I I I I I I I I I I I I
0 12 24 36 48 60 72 84 96 108 120 132 144 156

time [h]

168

Figure 5.5: Variable utilisation case, two investments; throughput stored hydrogen:
Investment 2 at t=5.4.
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Figure 5.6: Variable utilisation case, two investments; hydrogen potién cost and
capacity-demand.

of the fuel cell for electricity production and, of coursketpresence of a hythane
dispenser, as can be seen in Figure 5.7. The major advanithgeevabove layout
is that hythane can be used as an intermediate alternasVarid, possibly, help
introducing hydrogen by taking on some of the costs for ti@rneer, electrolysis
and hydrogen storage.

In this study, the investment strategy is optimised withdbgctives of min-
imising production cost for hydrogen as well as the requesiteount of hydrogen
that could not be satisfied, also called hydrogen unsatigketand. The optimi-
sation method is described in Section 3.4. It should be nibt&tlin Paper IV, the
results are expressed as Pareto fronts for the two objectivelved.

In Paper 1V, the optimisation of the hydrogen and hythangostavas carried
out using a GA (see Section 3.2). In the evaluation of eachtisol candidate
(individual), between one and 10 investments are allowdds i& accomplished
with a variable chromosome length, see Figure 5.8. Sincdifsteinvestment
is mandatory at year 1, no timing is needed. Instead the demaority policy
v, is defined. Demand can exceed supply and the demand pmyangrns how
the available hydrogen is used to satisfy the demand at ttehg and hydrogen
dispensers. Followingin the chromosome, is the size of each piece of equipment
for the refuelling station in investment 1. For consecuitiwvestments, the demand
priority policy is replaced by the time for the investment.

The selection, crossover and mutation operators are $iyategigned to cope
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Figure 5.7: Hythane and hydrogen refueling station layout. Natural igagformed

to hydrogen on-site and stored for delivery to vehicles.slaliso possible to produce
hydrogen from electricity by electrolysis. In Paper I, pithe parts within the refueling
station are considered.
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Figure 5.8: The encoding scheme used for the genetic algorithm in PRp€he priority
policy v, reformer size5;,, etc. are genes. Allowed values for genes (alleles) are given

Paper IV. The grouping of genes in the figure is only done farifitation.
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with the problem at hand, the variables of which are implei@ém chromosomes
of the kind shown in Figure 5.8. The selection operator ishef¢rowded tour-
nament selection type [88] where fitness is replaced withinierse crowding
distance within each Pareto front. The crowding distan¢kdsnean distance to
the nearest neighbour solutions. In this way the solutiging lfurthest from each
other are retained and a better spread of solutions witkifrtimt is achieved. The
crossover operator is of the one-point type, in which a @esispoint is chosen
randomly within the shortest mutual length of the chromossnThis will allow
crossover between chromosomes of different length, ifeerdnt number of in-
vestments. An upper limit of 10 investments was set. In th&tian operator, the
number of investments is changed with a low probability.

Traditionally, the control: is expressed as one vector for each decision pe-
riod [93]. The above approach is a parametrization wheresimients not used
are not part of the control. This is done in order to reducevéir@ble space and
achieve a faster convergence.

The optimisations in Paper IV are all two-dimensional. Sawperiments
were also made with three-dimensional optimisationsppéimising three objec-
tives at the same time. Even though it is possible to exteadbove algorithm
to any dimensionality, there are practical limitations gmed by the calculation
time. Evaluation of one individual takes 75 s, using all scensamples. Sce-
narios and sample generation are explained in Paper IV.ditvtb-dimensional
case, the populatioR; to be evaluated consists of 80 individuals. This number of
individuals is needed to populate the Pareto front curve. éualuation thus takes
1.7 hours. In the three-dimensional case at I8ask 80 = 6,400 individuals
would be needed to populate the generated Pareto surfgugingan evaluation
time of 5.7 days per generation. Since at least 200-300 gtoers are needed,
the whole optimisation would take approximately four yéars

Each optimisation will give 40 solutions along the Paretanfrfor the ob-
jectiveshydrogen production costndtotal hydrogen unsatisfied demanBach
solution is optimised for the lowest expected values of edyghctive, given 100
samples from one of three scenarios, and can therefore besseal as a distri-
bution, as discussed in Section 3.4. In addition there aredther performance
measures defined in Paper IV. These are unsatisfied demahgdmygenz;,, ,,,
production cost per kg for hythang,, unsatisfied demand for hythanrg,, and
flexibility p,a. All of the above measures can be calculated for the two scena
ios not part of the optimisation (the passive scenariosyoAdvestigated was the
variance of all the above measures. In all, this represdatga amount of data to
take into consideration before making a decision. One wénatalle the decision
process could be to follow the procedure:

1. Find a reasonable solution regarding hydrogen productst and unsatis-
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fied demand while checking that the distribution of eachalas is not too
wide.

. Check the location of the selected solution in the hythaweéuction cost

curve and the variance of the selected solution in the hiatog

. Check flexibility, i.e. the result that would be obtainédmother scenario

should become reality. This can either be done with the defilegibility
measure, or in more detail, by calculating, e.g. produatimsts and distri-
butions for the found solutions by applying the passive ades.

If production costs, unsatisfied demands and flexibiligy &l within rea-
sonable limits, choose the solution. If not, go back to step 1






Chapter 6

Concluding remarks

A number of techniques involving optimisation of induskti@nsition processes
have been explored. In particular the problem of findingraptilong-term invest-
ment strategies taking economic an environmental coraid@ss into account has
been considered.

The investment strategy optimisation methods describdthpers Il and IV,
have been successfully applied to two cases concerningpggdrdispensing in-
frastructure change. The first optimisation method, preeskim Paper I, com-
prises a simultaneous calculation of the long-term investnstrategy and the
short-term utilisation scheme for a deterministic demafide method has been
applied to the case of finding an investment strategy for mising the produc-
tion cost for a single hydrogen refuelling station. The peabwas shown to be
convex; thus the resulting solution is the global optimurne econd investment
optimisation method, presented in Paper 1V, uses stochdetnand scenarios and
multi-objective optimal control to produce the Pareto trohthe two conflict-
ing objectivesexpected production cosind expected unsatisfied demandhis
method was applied to the case of finding the optimal investrsiategy for a
combined hydrogen and hythane refuelling station. Dueéauthcertainty of the
stochastic demand function, satisfying all demand woulglire a production ca-
pacity well above the mean demand, which would be very costigaintain.

New ways for modelling joint economic-environmental systeand predict-
ing future key parameters have been developed, in orderitanee the applica-
bility and accuracy of structural optimisation methodse Tindings are presented
in a production system modelling case in Paper | and a timessprediction case
in Paper lll. The results obtained in Paper | have been appliendustry, by Ce-
menta AB, in the evaluation of the consequences of using nels in cement
production.

51
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6.1 Future work

The optimisation method in Paper Il was tested on the hydroggielling station
case, which was shown to be convex. Other algorithms forrsplthe resulting
NLP problem could be investigated, eiigterior pointor cutting plang72] meth-
ods, which are efficient for convex problems. It would alsdrieresting to test
the developed method on a non-convex case and still try @irohtglobal solu-
tion. The performance of the method in the described hydrogfeelling case can
most probably be improved. In case 2 with variable utilsatisee paper Il) the
computational time is unrealistically high for more tharotimvestments. Since
the most favourable solution probably lies between threk fare investments,
this limitation must be overcome. Even though computer\ward is constantly
gaining speed, this does not mean that efforts to improvienigation techniques
should be neglected. On the contrary, in the author’s opiritee improvement of
such techniques is more rewarding and useful than merelyngdor computers
to become faster.

Due to the sampled nature of the refuelling curve, the ingastd test case
contained only time discrete dynamics. It would be intengsto try the method
in a continuous dynamic case, i.e. where all the driving aigiare continuous.
Also, in order for the objective function to become more ista, it should also
incorporate, for example, the cost of labour for the hydrogart of the refuelling
station.

The investment problem in Paper IV was modelled as an opgmdgstem in
the sense that the entire investment strategy was deciaedin@dvance. Such a
system can, optimally, perform equally well as a closeglsgstem [93]. How-
ever, in order to increase robustness, a closed-loop gyratauld be used. This
would allow for the strategy to change in accordance witleaéed uncertainty
in the demand. Furthermore, the large amount of data frowhasiic multi-
objective optimisations can be a problem. Efficient use eftiethod for decision
support requires a higher degree of aggregation of thetsethdn that done in
Paper IV.

In both Paper Il and Paper IV, the environmental measurasieit, i.e. present
through the use of an environmentally friendly techniqueother option would
be to have explicit environmental figures in the objectivections. In Paper IV,
which is a multi-objective problem solved with a GA, sucheattjve functions
could easily have been used. If explicit environmental messcan be derived
and parametrised for different investment times, the teghes from Paper IV can
be applied.

Different options in the scenario generation proceduresbmexplored. At
present, a Poisson distribution is used to generate sarfiplasthe scenarios.
Other methods, e.g. ARIMA models or neural networks, coldd he evaluated.
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Another possibility is to merge the three existing scersimao one where the
long-term behaviour in terms of the number of vehicles isegped by a set of
stochastic variables. These variables can be tuned inGeooe to expectations
regarding the future development.






Chapter 7

Summary of appended papers

7.1 Paperl

In cement manufacturing, according to the law, the effeeingfchange to the pro-
duction process must be investigated before the modifieckgsois implemented.
Such changes might involve type of sand, fuel or additivesceRtly, Cementa
AB, a major cement producer in Sweden, started to invesgtigi&rnative, more
environmentally friendly types of fuel. In addition the cpamy also started to
improve the understanding of the involved physics and cheyiwhich turned
out to be complex. Today the verification comprises a catimrieof produced
emissions, but in the future other types of calculationsidite needed.

In this paper a flexible model is developed which fulfills tleguirements
above. A computationally acausal model made it possiblepaste the model
describing the cement manufacturing process from the pnolibrmulation. The
model was built in ASCEND [46], which is an object-orientedathematically
based modelling language as well as a multi-purpose siroaland calculation
environment. In order to further enhance flexibility, thedabwas designed with
a high degree of redundancy, so that the quantity of one palygroperty is ex-
pressed through a number of linked equations. This givesisiee freedom to
choose how to assign the physical property. In addition tbdehalso fully traces
the total cost throughout the production line.

7.2 Paperll

Running vehicles on hydrogen rather than petrol could leddds environmen-
tally hazardous emissions in a global perspective, esihedidhe hydrogen is
made from renewable energy. Techniques for producing arthgtthe hydro-
gen, as well as fuel cells to convert the hydrogen into alattr are constantly
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being improved. One of the most significant difficulties ie thtroduction of hy-
drogen vehicles today concerns the infrastructure that brubuilt. Considering
the fact that all present refuelling stations for petroldhé®be replaced, the total
investment is huge. In this situation it is crucial to emptbg most profitable
investment strategy, given the probable future developmen

In this paper the lowest production cost for a set of investiiever a period of
20 years for an individual hydrogen refuelling station isrid. For flexibility and
convenience of transportation, the refuelling statiolags an on-site reformer for
natural gas. The first case investigated assumes a constdotgion of hydrogen
and will yield the minimal cost, whereas the second one carsbd when special
considerations like periodic stop for maintenance of thérbgen reformer need
to be taken into account. Both optimisation problems arevsho be convex and
hence produce the global optimal point. The result is a hyeingroduction cost
of 4-6 USD/kg, comparable to the results of other studiese milajor difference
is that this study uses an increasing function to estimaatimber of hydrogen
vehicles refuelling at the station, and the estimated prtdu cost is obtained as
a time average. In other studies, the cost has been basedxanumautilization.

7.3 Paperlll

In this paper, discrete-time prediction networks (DTPIds)ovel type of recurrent
neural networks, are introduced and applied to the problemazro-economic
time series prediction. The DTPNs are optimized using atieakjorithm (GA)
that allows both parametric and structural mutations. Ruthé feedback cou-
plings present in the DTPNs, such networks are capable adienantary short-
term memory.

The results from applications involving two time seriesnedy the Fed Funds
interest rate and US GDP, indicate that DTPNs are capableesktep prediction
with higher accuracy than several other benchmark methblss, even though
the data sets contain a large amount of noise, the study ier Pandicates that
there is more information available in the time series thamoe extracted using,
e.g. feedforward neural networks or ARIMA models.

In addition, an investigation of predictability was cadeut. Here, the DTPNs
were required not only to make a one-step prediction, bott@lprovide an esti-
mate of the accuracy of the prediction. However, it was faimadithe discrepancy
between the predictions obtained from the DTPNs and thebdata points in the
time series consisted of noise, indicating that the DTPNeéal extract almost all
the available information from the time series.
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7.4 PaperlV

Paper IV concerns the problem of finding the optimal invesins¢rategy for a
single hydrogen and hythane refuelling station giving thaimum production
cost while trying to match the hythane and hydrogen capdcity demand gen-
erated from three future stochastic scenarios over a 20pgréod. Hydrogen is
a promising fuel for vehicles. However, one of the major ieasris the lack of a
hydrogen infrastructure. An important component of therbgén infrastructure
is the individual hydrogen refuelling station. The longrteprofitability of the hy-
drogen filling station is a key issue for the success of thestten to a hydrogen
infrastructure. The resulting minimal expected produttost lies between 2-6
USD/kg for hydrogen and 1-1.5 USD/kg for hythane, dependingreferences
for unsatisfied demand, flexibility etc. The results are m&abe used as decision
support when planning new refuelling stations.
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Abstract

State of the art Life Cycle Inventory (LCI) models are typically used to relate resource use and emissions to manufacturing and
use of a certain product. Corresponding software tools are generally specialised to perform normalisation of the flows to the
functional unit. In some cases it is, however, desirable to make use of the LCI model for other types of environmental assessments.
In this paper, an alternative modelling technique resulting in a more flexible model is investigated. We exemplify the above by
designing and building a model of a cement plant. The commissioner’s, in this case Cementa AB, requirements on a flexible model
that generates information on environmental performance, product performance and the economic cost were seen as important. The
work reported here thus has two purposes; on the one hand, to explore the possibility for building more flexible LCI models, and
on the other hand, to provide the commissioner with a model that fulfils their needs and requirements. Making use of a calculational
a-causal and object-oriented modelling approach satisfied the commissioner’s special requirements on flexibility in terms of modu-
larity and the types of calculations possible to perform. In addition, this model supports non-linear and dynamic elements for future
use. The result is a model that can be used for a number of purposes, such as assessment of cement quality and environments
performance of the process using alternative fuels. It is also shown that by using the above modelling approach, flexibility and
modularity can be greatly enhanced.

O 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Life-cycle-simulation; Predict; Consequences; Process model

1. Introduction assess both the environmental performance and the econ-
omic cost and the product performance of alternative
The interest in environmental issues, as well as the production operations.
pressure on industries to develop more environmentally The purpose of this paper is to describe how we
preferable products and processes, is constantly increaseesigned and built a flexible model for process and pro-
ing. This drives product and process development duct development in the cement industry. The model
towards more sustainable practices. However, products,predicts the environmental performance, the economic
processes and production systems are always developedost and the product performance by simulating different
taking cost and product performance into consideration. operational alternatives for producing cement. The needs
Thus, there is a growing need for tools to predict and and requirements were specified by the cement industry.
These are outlined in Section 3. We give our interpret-
ations as a conceptual model in Section 4. We chose the

* Corresponding author. Tel+46-8-625-68-22; fax:+46-8-625- modelling approach and_SimUIation tO_OI and_ describe
68-98. how we designed and built the model in Section 5. We
E-mail address: karin.gabel@cementa.se (K. i&4). end Section 5 by testing the tool in two real cases. The
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results of these tests show that the modelling approach
used can generate a potentially powerful tool.

A life cycle perspective (“cradle to gate”) was used
to assess the environmental consequences of process and
product changes, in order to avoid sub-optimisation. The
conceptual model represents the cement manufacturing
process from cradle to gate. However, the model in this
paper, the construction of and test of we describe in
detail, represents the gate to gate part of the manufactur-
ing process. Environmental performance is described in
terms of environmental load (resource use and
emissions). Economic cost is described in terms of the
company’s own material cost and production cost. Pro-
duct performance is expressed as cement composition.
The product performance is used to determine whether
or not the operational alternative is feasible. Environ-
mental load and economic cost have to be related to a
feasible operational aternative and product.

Cementa AB, the cement manufacturer in Sweden and
the commissioner of the study, has previous experience
of Life Cycle Assessment (LCA) through a Nordic pro-
ject on Sustainable Concrete Technology [1]. In that pro-
ject, several LCA studies were carried out on cement,
concrete and concrete products [2,3,4,5,6]. One con-
clusion drawn from the project was that life cycle assess-
ment is a tool, with the potential for improvement, to be
used to avoid sub-optimisation in the development of
more environmentally adapted cement and concrete pro-
ducts and manufacturing processes [1]. Severa other
LCA’s of cement, concrete and concrete products have
also been carried out [7,8,9,10].

However, there are limitations with today’s LCA. One
important limitation, from an industrial perspective, is
that social and economic benefits of industrial operations
are not taken into account. Another limitation of present
LCl modelling is its limited capability to perform differ-
ent types of simulations. There are limits on the possi-
bility of changing process variables without changing the
underlying model. Usually a new model is built for each
operational alternative simulated. In addition, LCl mod-
els are usually defined as linear and time independent.

2. Background

2.1. Cement manufacturing and related environmental
issues

The cement manufacturing process, shown in Fig. 1,
consists of the following main steps: limestone mining,
raw material preparation, raw mea grinding, fuel prep-
aration, clinker production, cement additives preparation
and cement grinding. Clinker is the intermediate product
in the manufacturing process. The following description
is based on the manufacturing process at Cementa's Slite
plant. The cement manufacturing process at the Slite

raw material
preparation

cement

raw meal clinker
grinding :> production :> grinding

i [ i

limestone fuel cement additive
mining preparation preparation

cement)

Fig. 1. Cement manufacturing process.

plant is described in detail in the report “Cement Manu-
facturing — Process and Material Technology and
Related Environmental Aspects’ [11].

Limestone, the main raw material is mined and
crushed. Other raw materials used may be sand, iron
oxide, bauxite, slag and fly ash. The raw materials are
prepared and then proportioned to give the required
chemical composition, and ground into a fine and homo-
geneous powder called raw meal.

Various fuels can be used to provide the thermal
energy required for the clinker production process. Coal
and petroleum coke are the most commonly used fuels
in the European cement industry [12]. A wide range of
other fuels may be used, e.g. natural gas, oil and differ-
ent types of waste, e.g. used tyres, spent solvents, plas-
tics, waste ails. The fuels are processed, e.g. ground,
shredded, dried, before being introduced into the pro-
CEess.

Clinker production is the “heart” of the cement manu-
facturing process. The raw mea is transformed into
glass-hard spherically shaped minerals clinker, through
heating, calcining and sintering. The raw meal enters the
clinker production system at the top of the cyclone tower
and is heated. Approximately half of the fuel is intro-
duced into the cyclone system, and at about 950° C the
carbon dioxide bound in the limestone is released, i.e.
the calcination takes place. The calcined raw meal enters
the rotary kiln and moves dowly towards the main
burner where the other half of the fuel is introduced.

Raw materials and fuels contain organic and inorganic
matters in various concentrations. Normal operation of
the kiln provides high temperature, along retention time
and oxidising conditions adequate to destroy almost al
organic substances. Essentially al mineral input, includ-
ing the combustion ashes, is converted into clinker. How
metals entering the kiln behave depends largely on their
volatility. Most metals are fully incorporated into the
product, some precipitate with the kiln dust and are cap-
tured by the filter system, and some are present in the
exhaust gas.

Inter-grinding clinker with a small amount of gypsum
produces Portland cement. Blended cement contains, in
addition, cement additives such as granulated blast fur-
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nace dlag, pozzolanas, limestone or inert filler.
Depending on their origin, the additives require differ-
ent preparations.

The exhaust gases leaving the clinker production sys-
tem are passed through a dust reduction device before
being let out through the stack. The dust is normally
returned to the process. The clinker production system
is the most important part of the manufacturing process
in terms of environmental issues. The main use of energy
is the fuel for clinker production. Electricity is mainly
used by the mills and the exhaust fans. The emission to
air derives from the combustion of fuel and the trans-
formation of raw meal into clinker. Apart from nitrogen
and excess oxygen, the main components of kiln exhaust
gas are carbon dioxide from the combustion of fuel and
the calcination of limestone and water vapour from the
combustion process and raw materials. The exhaust gas
also contains dust, sulphur dioxide, depending on sul-
phur content of the raw materials, small quantities of
metals from raw material and fuel, and remnants of
organic compounds from the raw material.

The emissions to air from the clinker production sys-
tem largely depend on the design of the system and the
nature and composition of the raw material and fuel [11].
The raw material and fuel naturally vary in composition
and the content of different compounds have a different
standard deviation. The emissions of metals depend on
the content and volatility of the metal compound in the
raw material and fuel. The metal content varies over time
and consequently so does the metal emission.

The Nordic study “LCA of Cement and Concrete —
Main Report” points out emissions of carbon dioxide,
nitrogen oxides, sulphur dioxide and mercury, and the
consumption of fossil fuel as the main environmental
loads from cement production [6]. According to the Eur-
opean Commission, the main environmental issues asso-
ciated with cement production are emissions to air and
energy use [13]. The key emissions are reported to be
nitrogen oxides, sulphur dioxide, carbon dioxide and
dust.

2.2. Means and work done to minimise negative
environmental impact

The negative environmental impact from cement
manufacturing and cement can be minimised in numer-
ous ways. These can be grouped into four categories:

e Substituting input, raw materials, fuels and cement
additives, to the process.

® Process development; optimise and develop the exist-
ing process.

e End-of-pipe solutions; adding emission reduction sys-
tems.

e Product development; develop new products or
change cement composition and performance.

Many of these solutions have consequences outside
the actual cement manufacturing plant, both upstream as
well as downstream. Therefore, the life cycle perspective
is necessary to assess the environmental consegquences
of process and production changes in order to avoid
sub-optimisation.

Examples of environmental improvement measures
taken at the Slite plant in recent years are given in the
following, in order to give examples of technical devices
and measures the model should be able to deal with.

Different types of waste are used, e.g. used tyres, plas-
tics, spent solvents, waste oils, as substitutes for tra-
ditional fuels to reduce the consumption of virgin fossil
fuels and the emission of carbon dioxide. The goa isto
replace 40% of the fossil fuel with aternative fuel [14]
by 2003. Cementa is also looking into the possibility of
using alternative raw materials, i.e. recovered materials,
to substitute for traditional, natural raw materials. The
aternative raw materials can either be used as raw
material in the clinker production process or as cement
additives, i.e. to substitute for clinker in cement grinding.

In 1999 a new type of cement, “building cement”, was
introduced on the Swedish market. Building cement is
a blended cement with about 10% of the clinker replaced
with limestone filler. The environmental benefits of sub-
stituting limestone filler for clinker are areduction in the
amount of raw meal that has to be transformed into
clinker, and consequently less environmental impact
from the clinker production process, raw material and
fuel preparation. The environmental impact per ton
cement has been reduced by 10% [15].

The use of aternative material and fuel at the cement
plant requires pre-treatment, transport and handling, and
affects the alternative treatment of waste and by-pro-
ducts. New materials and fuels lead to new combinations
and concentrations of organic and inorganic compounds
in the clinker production system, which in turn lead to
new clinker- and exhaust gas compositions.

As an end of pipe-solution, a Selective Non Catalytic
Reduction system (SNCR) to reduce nitrogen oxide
emissions was installed at the Slite plant in 1996. In
1999, a scrubber was taken into operation to reduce sul-
phur dioxide emissions. In the scrubber, SO, is absorbed
in aslurry consisting of limestone and water. The separ-
ated product is used as gypsum in the cement grinding.

3. The commissioner’s needs and requirements on
the model

The commissioner’s, Cementa AB, needs and require-
ments, as interpreted from discussions with representa-
tives from different departments, are outlined in this sec-
tion.

Cementa AB needs a tool to predict and assess pro-
duct performance, environmental performance and econ-
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omic cost of different operationa aternatives for pro-
ducing cement. The tool is to be used to support
company internal decisions on product and process
development and strategic planning through generating
and assessing operational alternatives. Another specific
use is as a basis for government permits. To get permits
for test runs of new raw materials and fuels, information
on the expected outcome is needed.

Cementa intends to learn about the system and the
system’'s properties regarding product performance,
environmental performance and economic cost and the
relations between these parameters. The life cycle per-
spective is seen as important. Cementa wants to be able
to simulate combinations of raw materias, fuels and
cement additives in combination with process changes
and end-of-pipe solutions. For al tested combinations,
information about the system’'s predicted properties
should be generated and assessed in relation to feasibility
criteria, such as product performance, emission limits
and economic cost. Product performance is regarded as
the most important criterion.

The commissioner gave the following two examples
of how to use the tool. They asked for specific and
detailed information about the predicted consequences
for each alternative.

A Produce a given amount of cement, given the raw
material mix, the fuel mix and fuel demand, and the
cement additive mix. What is the product perform-
ance of the cement, the environmental performance
and the economic cost?

B Produce a given amount and type of cement, given
the fuel mix and fuel demand, the cement additive
mix and the available raw materials. What raw
material mix is required? What are the environmental
performance and the economic cost?

Concrete with different strength developments needs
different amounts of cement. Therefore, it should be
possible to state the amount of cement produced in the
operational alternative simulated. The environmental
performance should be described as environmental |oad,
i.e. as resource use, emissions to air and water, and
waste. The composition of the kiln exhaust gas from
clinker production should be described. The composition
of al raw material, fuel, intermediate products and pro-
ducts should be described and possible to evaluate. The
product performance should be described with three
ratios; the lime saturation factor (LSF), the silica ratio
(SR), and the alumina ratio (AR), used in the cement
industry as measures of cement composition. The ratios
describe the relation between the four main components
and are shown in Table 1. The total material and pro-
duction cost in “SEK” per amount cement produced
should be calculated. The accumulated material and pro-
duction cost should be available to study after each step

in the cement manufacturing process; both as cost per
amount cement produced and as cost per kilo of the
intermediate product.

Cementa produces cement at three plants in Sweden.
The different plants use the same main production pro-
cess as described in Section 2.1. However, there are vari-
ations between the plants, especialy in the design of the
clinker production system. Variations are mainly due to
the nature of the available raw material, when the plant
was built, modifications done and the installation of dif-
ferent emission reduction systems. It should be easy to
adapt the tool to represent any of the commissioner’s
cement manufacturing processes, athough the first
model was intended to represent the Slite plant.

The content of metal compounds in the raw material,
and the standard deviation of the metal content, vary
depending on the location of the plant. Thus, the emis-
sions of metals to air vary from one plant to another.
Emission of metals from clinker production should be
included in the first model, but they are not in focus.
However, in the next stage, when site-specific models of
each plant are developed, the level of detail with which
metal emissions are described, should be further
increased.

The cement manufacturing process is by nature non-
linear and dynamic. The tool should describe stable state
conditions and describe the static and linear transform-
ation of raw material and fuel into clinker. The tool has
to have development potential to include the non-linear
transformations in the process. In addition, there should
also be the potential to simulate dynamic behaviour, e.g.
during start-up and shut down of the kiln.

4. Conceptual model and system boundary

Based on the commissioner’s requirements, a concep-
tual model was constructed, as presented in the follow-
ing:

To avoid sub-optimisation, the model was to be from a
life cycle perspective. The raw material, fuel and cement
additives used are to be traced upstream to the point
where they are removed as a natural resource. Alterna-
tive raw materias, fuels and cement additives are by-
products or waste from other technical systems. The pro-
duction of these dlternative products is not to be
included. However, the additional preparation, handling
and transport to make them fit the cement industry is to
be included. The cement is to be followed to the gate
of the cement plant.

The cement manufacturing system has been divided
into a background system and a foreground system [16].
The foreground system represents Cementa’'s “gate to
gate” part of the system. Cementa can, in detail, control
and decide on processes in the foreground system, but
can only make specifications and requirements on pro-



K. Gabel et al./ Journal of Cleaner Production 12 (2004) 77-93 81

Table 1
Product performance (cement-, clinker-, raw meal ratios)

Ratio Denomination Formula

Lime saturation factor LSF L SF=(100Ca0)/(2,8Si0,+1,1A1,04+0,7Fe,05)
Silica ratio SR SR=(S0,)/(Al ,Os+Fe,03)

Alumina ratio AR AR=(Al,0;)/(Fe;05)

Note: Ca0, SiO,, Al,O; and Fe,0O; are all expressed in weight percentage.

ducts from the background system. Depending on
whether the additiona preparation, handling and trans-
port is done by Cementa or not, the processes are either
in the foreground system or the background system. The
conceptual model, in Fig. 2, shows the foreground and
background systems, and in addition awider system. The
wider system shows consequences of actions taken at the
cement plant, which exist, but are not modelled.

The foreground system was divided into the follow-
ing processes.

¢ |ime- and marlstone extraction, mining and crushing;

homogenisation, transportation and storage might take
place and, where applicable, are accounted for.

The background system consists of the following pro-
Cesses:

® Production and transport of sand and other raw
material;

e Additional preparation of alternative raw materials
and transport to the cement plant;

® Production and transport of traditional fuels;

e Additional preparation of waste to convert them into
fuels for cement manufacture and transport to the

e Sand grinding; cement plant;
® Raw meal grinding; ® Production and transport of cement additives,
e Coa and petroleum coke grinding; e Additional preparation of alternative cement and

transport to the cement plant;
Production of €electricity.

e Clinker production;
e Cement grinding and storage. °

Between each one of these processes, intermediate The plant in Slite produces waste heat used for district

BACK GROUND Ammoniac Electricity District WIDER SYSTEM :
SO : : : l
SYSTEM production Lrgrsport production heating, Slite !
A 1
y
FORE GROUND
v
é" SNCR SYSTEM
Raw meal A . Cement grinding
orinding »] Clinker production system and storage _’
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Transport 1 mining and handling Alt. ﬁ_"el Transport Transport
crushing and storage handling <
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1 ) 3 X x h
Sand Coal Pet coke Alt. fuel BACK GROUND
extraction production production | | processing SYSTEM
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Fig. 2. Conceptual model.
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heating in Slite. The waste heat is accounted for as an
output, a product, but no credit is given to the cement
production through allocation or system enlargement. In
the same way, when alternative raw materials and fuels
are used in cement manufacturing, the amount of waste
thus disposed of is accounted for, but no alocation is
made. These consequences of the cement manufacturing
process are placed in the wider system in the concep-
tual model.
Not considered are:

e Production and maintenance of capital equipment for
manufacturing and transport;

e Extraction and production of alternative raw
materials, fuels and cement additives,

e Working material, such as explosives, grinding media
and refractory bricks;

® |ron-sulphate used in the cement milling to reduce
chromium;

e Offices.

The two systems were modelled with different tech-
niques and level of detail. The foreground system model
was built according to the techniques described in the
next section. For the background system, traditional life
cycle inventory (LCI) techniques [17] were used. Pro-
duct performance and economic cost were taken into
account by assigning the products entering the fore-
ground system a chemical composition and a cost. Sub-
sequently, flows entering the foreground system are
described as a flow of mass (kg/s), cost (SEK/s) and
thermal energy content (MJs) with a composition
according to Table 2, and in accordance with the pur-
chase deal. Flows of material in the background system
are defined and described as a flow of mass (kg/s).

The environmental load (resource use and emissions)

Table 2
Material and fuel composition

was described according to the parameters in Table 3.
The kiln exhaust gas from the clinker production system
was described using the parameters in emission to air in
Table 3. The transport was expressed both in ton kilo-
metres and as the related environmental load, according
to the parameters in Table 3.

Table 3
Environmental load, resource use and emissions to air and water

Resource use
Raw material, kg
Alternative raw material, kg

Fuel, kg and MJ

Alternative fuel, kg and MJ

Water, kg

Emission to air Hg, mercury
CO,, carbon dioxide Mn, manganese
NO,, nitrogen oxides (NO and NO, as NO,) Ni, nickel
SO, sulphur dioxide Pb, lead

CO, carbon monoxide Sh, antimony
VOC, volétile organic compounds Se, selenium
Dust Sn, tin

As, arsenic Te, tellurium
Cd, cadmium TI, thallium
Co, cobolt V, vanadium
Cr, chromium Zn, zinc

Cu, copper

Emission to water

BOD, biological oxygen demand

COD, chemica oxygen demand

Total N, total nitrogen content

Non elementary in-flow, “flows not followed to the cradle”
Alternative raw material and fuel

Non elementary out-flows, “flows not followed to the grave’
Industrial surplus heat, MJ

Compound Unit Compound Unit

Ca0 weight-share As, arsenic weight-share
SO, weight-share Cd, cadmium weight-share
Al,O; weight-share Co, cobolt weight-share
Fe,Oq weight-share Cr, chromium weight-share
MgO weight-share Cu, copper weight-share
K,0O weight-share Hg, mercury weight-share
Na,0O weight-share Mn, manganese weight-share
SO; (sulphides and organic in raw material) weight-share Ni, nickel weight-share
SO; (sulphates in raw material) weight-share Pb, lead weight-share
SO; (in fuel) weight-share Sb, antimony weight-share
Cl weight-share Se, selenium weight-share
C (in traditiona fuel) weight-share Sn, tin weight-share
C (in dternative fuel) weight-share Te tellurium weight-share
C (in raw material) weight-share TI, thallium weight-share
Organic (in raw material) weight-share V, vanadium weight-share
Moist (105° C) weight-share Zn, zinc weight-share
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5. Modelling and simulation

This section starts by interpreting the commissioner’s
requirements in a system technical context. Only the
foreground system is considered in the following. The
result is a set of decisions on the modelling and the
simulation techniques. This is followed by a description
of how the model was built in accordance with these
techniques and, finally, how the constructed model
was validated.

5.1. System technical interpretation

To predict the performance of the desired type of
operational aternatives it was concluded that we had to
simulate them, i.e. perform calculations on a model rep-
resenting the cement manufacturing plant. A model is,
here, a mathematical description of any real subject. A
simulation is then any kind of mathematical experiment
carried out on the model.

The requirements on the model indicate the necessity
of keeping these smulations flexible in the sense that it
should be possible to predict a number of aspects of the
plant, depending on the situation. Examples of static
equilibrium calculations that are given in Section 3
include:

A Setting the percentage of each raw material in the raw
meal and each fuel in the fuel mix used. Then calcu-
lating the percentage of raw meal mix and fuel mix,
the produced cement quality, emissions and economic
cost under the constraint that the fuel provides all the
thermal process energy. This means we give al the
materials necessary to produce cement and then
watch what comes out of the process.

B Setting properties of the produced cement and each
fuel in the fuel mix used. Then calculating the per-
centage of each raw materia in the raw meal mix,
the percentage of raw mea mix and fuel mix, emis-
sions and economic cost under the constraint that the
fuel provides the process thermal energy. This means
we want to control properties of the cement produced
and calculate the proportions of the raw materias,
under the same constraint for the fuel to provide
enough thermal heat.

In a mathematical model, numerical parameters can
be divided into the following categories:

e Constants. Are set when the model is built and then
remain.

® | ocked variables. Parameters set to a numerical value
throughout a certain simulation, in accordance to
input data.

® Free variables. Parameters that will be calculated in
the simulation. Some of these are internal variables

in the model and others are the ones we want to calcu-
late; the output.

The difference between the above cases is which para
meters are locked and which are free. This controls how
the simulation is carried out, i.e. how the equations for
simulation are formulated. The two static equilibrium
cases above will result in different sets of equations. A
simultaneous solving of arespective set of equations will
render the result. It is indeed possible to make these cal-
culations with any general mathematical package avail-
able. If so, each of the cases has to be treated separately.
The result is a well functioning simulation for the spe-
cific case that cannot, however, be used for other differ-
ent simulations. If so, the equations need to be re-formu-
lated. Since a specific requirement was flexibility in the
calculations that are possible to perform, we will refine
our modelling method by a separation of the model, or
what is normally thought of as the model, into three
parts, namely:

e A neutra model. Only the model, i.e. a description
of our system, in which the connecting equations are
expressed in a neutral form. The model maps our
interpretation of the plant onto a mathematical formu-
lation, but it does not include any specific problem to
be solved, hence it is caled neutral.

e A problem formulation. An explicit list of which
parameters to lock and a value with which to desig-
nate each of them.

e A simulation method, which is the calculation method
chosen, can aso be considered to be a part of the
problem formulation.

The most powerful way to achieve this separation is
to remove the calculationa causdlity (CC) from the
model [18]. The CC determines the order in which the
equations included in a simulation are calculated. This
is merely a technical consideration and affects only the
order in which the calculations are done and does not
imply any restrictions or special considerations regard-
ing the nature or contents of the system behind the
model. The resulting model is said to be a-causal, or
non-causal, in that nothing is said about the order of
calculation in future ssimulations with the model. The
model can be regarded mathematically as a number of
equilibrium eguations connected to each other.

Another important aspect of flexibility for the model
is modularity. In order to be truly flexible, according to
the requirement regarding adjustments to represent dif-
ferent cement plants, the model has to be easy to re-
build. In most practical cases, changes would probably
be limited to assigning different inputs and performing
different kinds of simulations, which would aready be
part of the problem formulation. In some cases, this is
not enough and the underlying model structure needs to
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be altered. Changing the number of raw materias or
fuels is one such case, and adopting it to fit a cement
manufacturing plant with different designs is another. A
step to create modularity has already been taken by mak-
ing the model a-causal. This is merely a theoretical pre-
requisite and will not, in itself, produce a flexible model.
On the other hand, if this is combined with an object
oriented modelling language, we will end up with a prac-
tical, easily re-combinable model. The paradigm of
object orientation is something that affects the language
the model is expressed in. This includes a natural way
to keep parts that are separate in redlity as separate
objects in the model, so that the model resembles reality,
or a suitable picture of reality. Usualy this feature is
used to group sub-parts of the model into objects, but it
is aso useful to group flow entities together. Flows that
are made up of a number of substances can thus be
treated as an entity to enhance the transparency and ease
of comprehension.

The cement manufacturing process contains both parts
that vary over time and parts which cannot always be
sufficiently described with a linear relation. One of the
requirements was to make it possible to account for these
properties in the future, so it must be possible to include
both dynamic and non-linear elements. The first model
whichis covered in this paper does not, however, contain
any dynamic or non-linear elements.

In addition to being able to include the above dynamic
elements of the model, we also need to perform dynamic
solving, i.e. calculate and trace (all) the variables in the
model over a certain time span. This simulation type can
be used for environmental predictions when, e.g., start-
ing up, shutting down or changing parameters in the
cement production process. The starting point for such
a simulation can be given values for a set of variables,
such as the start conditions for the plant when per-
forming a start up simulation. It can also be from a state
of equilibrium, which is the case when simulating a shut
down situation. In the latter case, we need a method to
determine this state of equilibrium, e.g. perform a steady
state solving. The steady state solving can, of course,
also be used on its own to find stable points of operation
for the production plant. It is then equivalent to what in
LCI is generaly called “normalisation of the life cycle’
or, specificaly in ISO 14041 [17], “relating data to func-
tional unit”. In addition, another simulation type which
is mentioned for future use, is optimisation.

In summary, we have found that in order to fulfil the
reguirements of the commissioner the model needs to be
flexible in terms of:

e Simulation — type of predictions that can be made:
static equilibrium, dynamic solving, etc.;

e Modularity — ease of combination into models of
other cement plants by re-arrangement of the parts;

e Transparency — al governing equations and resulting

figures readily available to the user, even the
internal ones;
e Comprehension — easy to grasp and understand.

We have, thus, found that the following modelling
approach is needed:

e Calculational non-causal used to separate a neutral
model and the problem formulation;

e Physical modelling to keep physical entities together
in the model;

® Object oriented modelling language to enhance the
reusability of the model.

In addition, the model needs to support:

® Dynamic elements;
e Non-linear elements.

Simulation types the software tool needs to support:

® Steady state solving;
® Dynamic solving;
e Optimisation.

Not al of the requirements above are fulfilled with
state-of-the-art LCI techniques [19]. In LCI, it is gener-
ally enough to describe the life cycle with such a resol-
ution that it is sufficient with a static and linear model.
Moreover, current LCA tools normally provide normal-
isation of the life cycle to the reference flow as the only
simulation alternative. Consequently, there are no LCA
related software tools available that can perform the
desired types of simulations. In the field of genera
simulation there are, however, a large number of tools
that can be used. Some equivalent examples include
OmSim [20], DYMOLA [21] and ASCEND [22]. These
software are of the kind that use computational non-cau-
sal models and alow a number of types of simulations
to be performed. For this application, ASCEND was
chosen based on the following criteria:

® |t was possible to run on a PC, hence convenient
(DYMOLA, ASCEND);
® |t had plug-in modules allowing user made simulation

types, hence flexible (OmSim, DYMOLA,
ASCEND);
® |t was freeware, hence economica (OmSim,
ASCEND).

5.2. Modédl construction

Building a model with the specifications and tech-
niques discussed above is more a matter of generais-
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ation than specification. Most of the core components in
the model will hence reflect the general behaviour of an
“object” or “function”. Later, these will be specialised
to the specific case, here the cement manufacturing plant.
This technique of extracting layers of behaviour is well
suited for object oriented implementation where the
mechanism of inheritance can be used for that purpose.
The genera behaviours are implemented in base classes
and the more specific in inherited ones.

The first step when building the model was to find
the objects contained in our perception of the cement
manufacturing plant. This was aready done in the con-
ceptual model. These objects then needed to be
abstracted into their general behaviour. Usudly, this
reveals that a number of objects follow the same basic
rules, which then means that they can inherit from the
same base object.

First, the general functionality of parts in the concep-
tual model was extracted. Then, a number of generd
objects were built to host the functionality. Focus was
put on the mechanisms behind the general functionality
and the correspondence with reality for the more specific
one. From the conceptual model, we found the objects
given in Table 4.

In the following, a detailed explanation of some of
these objects is given. The syntax used is based on the
ASCEND IV model language [22] but has been simpli-
fied to only include the contents (semantic). All code is
given in another font (model). The word composition
thus means the model (object) composition as declared
in Table 5.

Table 4
Total listing of objects in the model

85

Table 5
Syntax used in declaration of objects

Syntax Explanation
MODEL xyz Start declaration of the object xyz
Declarations: Part of object where declarations are given
abc IS_A xyz; Declares abc as of type xyz
abc[n] IS_A xyz; Declares abc as an array with n number of
elements of type xyz
Assignments: Part of object where constants are initiated
Rules: Part of object where the equations are given
FOR i IN abc END Loop where i get the contents of each
FOR; member in abc
Compute the sum of all elements in abc

SUM [abc]
= Neutral equality. Used to express
equilibrium, i.e. that two expressions are
numerically equal. It is not an assignment
and does not imply any order of calculation,
e.g. left to right.

5.2.1. Composition

This object is used to represent any kind of compo-
sition of a mixture. A list is used to contain the name
of each component in the mixture (compounds). The
weight share of each component is given as a fraction
with the range of 0 to 1 (y[compounds]). To be able to
handle redundant descriptions (where the weight of the
parts differs from that of the whole), no limitation is put
on the fractions to sum up to 1.0. The object also con-
tains the cost (cost) and heat content (heat) per mass
unit of the total mixture. The typical usage of this object
is to declare the contents of a material, such as a raw
material, fuel or a product.

Name Inherits from Role

composition - Any kind of composition of a mixture
mass_stream - Flow of materia

materialfuel_stream mass_stream Flow of raw materials and fuels
kilnexhaustgas_stream mass_stream Flow of exhaust gas

chemical_analyser -
materialfuel_mixer -

rawmeal_mixing materialfuel_mixer
fuel_mixing materialfuel_mixer
rawmealfuel_mixing materialfuel_mixer
cement_mixing materialfuel_mixer
materialfuel_grinder -

rawmeal_grinder _dlite materialfuel_grinder
sand_grinder_dlite materialfuel_grinder
lime_grinder_slite materialfuel_grinder
marl_grinder_slite materialfuel_grinder
coalpetcoke_grinder_dlite materialfuel_grinder
cement_grinder_dlite materialfuel_grinder
clinker _production -

clinker _production_dlite clinker_production
cement_model_dlite -

Test probe for specific cement ratios

Mixer for n number of material fuel streams
Specific raw meal mixer at Slite

Specific fuel mixer at Slite

Specific raw meal fuel mixer at Slite
Specific cement mixer at Slite

General grinder for a material fuel stream
Specific grinder for raw meal at Slite
Specific grinder for sand at Slite

Specific grinder for lime at Slite

Specific grinder for marl at Slite

Specific grinder for coal and pet coke mixture at Slite
Specific grinder for cement at Slite

General clinker production

Specific clinker production at Slite

Top level model over the Slite plant
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MODEL composition
Declarations:
compounds ISA set OF
symbol_constant;
y[compounds] |S_A fraction;
cost IS_A cost_per_mass;
heat ISA
ener gy_per_mass;
Note: The contents of the compounds list is not yet
specified.

5.2.2. Mass stream

The mass stream is a flow of material where the con-
tent is declared by a composition (state). The flow rate
is expressed both as total flow (quantity) and flow of
each of the contained components (f). For convenience
(easier access at higher levels), the list of components
in the flow is repeated (compounds). It is, then, declared
equivalent to the one already present within state to pre-
vent deviating values.

The two ways of describing the flow can be expressed
in terms of each other and, thus, are not independent of
each other. In fact, for all components the flow of each
component equals the total flow times the fraction for
the component in question (f[i] = quantity*state.y[i]).

MODEL mass_stream

Declarations:
compounds IS A set OF
symbol_constant;
state IS_A composition;
guantity,ffcompounds] |S.A massrate;
Rules:
compounds, ARE_THE_SAME;
state.compounds
FOR i IN compounds f_def[i]: f[i] =
CREATE quantity «state.y[i];
END FOR;

5.2.3. Material—-fuel stream

The materia—fuel stream is a specialisation of the
mass-stream declared above. It represents the flow of
raw materials and fuelsin the cement manufacturing pro-
cess. It takes all relevant materials into account, as
defined in Table 2, and permits these to be described
either as a share or mass per time. Here, the share option
is used to declare the weight share of each component.
The materialfuel stream also carries the associated cost
and heat.

MODEL materialfuel_stream REFINES
mass_stream

Declarations:
cost IS_.A cost_per_time;
heat ISA energy_rate;
Assignments:
Compounds.=['Ca0O’,'SI02','Al203
, Fe203 ‘M g0’ ‘K20’
,'Na20’,' SO3sulphides
,'SO3sulphates’, SO3fu
e’ Cl','Ctrad’,' Calt’
,Craw’,'Moist’,'Organi
c,As,)Cd, Co Cr’
S CU S Hg','Mn’ NI’
S P’ Sh ) Se s, Te

STV 2]
Rules:
cost = quantityxstate.cost;
heat = quantity xstate.heat;

5.2.4. Kiln exhaust gas stream

The exhaust gas from the clinker production system
is modelled as a flow representation of its own. The
components are specified with the mass flow, e.g. kg/s.
The components are defined in Table 3. The kiln exhaust
gas stream is a specialisation of the mass-stream, to
which the appropriate compounds have been added as
described below.

MODEL kilnexhaustgas stream REFINES

mass_stream

Assignments:

Compounds.=['CO2raw’,'CO2trad’

,CO2alt’,'CO’'VOC’
S NOx’,'SO2 ,*vapour’
,As,Cd,)Co,Cr',/Cu
"SHg','Mn’'Ni’,' Pb’
S S0, Se, S TE ST
SVLZn];

5.2.5. Chemical analyser

A chemical analyser is a sort of test probe for product
performance. It describes the product performance in the
ratios used in the cement industry, i.e. Lime Saturation
Factor (LSF), SilicaRatio (SR) and Alumina Ratio (AR).
Definitions of these are given in Table 1.

The analyser is modelled as a stand-alone object and
can be connected to any material fuel stream compo-
sition object in order to measure the performance.

MODEL chemical_analyser

Declarations:
state IS.A composition;
LSF IS A factor;
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SR IS_A factor;
AR IS_A factor;
Rules:
LSF = 100«statey[' CaO’]/(2.8+state

y['Si02']+1.1xstatey[ Al20
3']+0.7xstatey[' Fe203'));

SR = statey[' SIO2']/(state.y[' Al2
O3 ]+statey[ Fe203']);
AR = statey['Al203']/state.y[ Fe

203];

The analyser can also be used to control the ratios of
a certain material—fuel stream. In such a case, the ratios
parameters (LSF, SR and AR) can be set and there-
after locked.

5.2.6. Material—fuel mixer

A mixer object transforms two or more inflows of
material into one outflow and thus is an n-to-1 junction
for material—fuel streams. It can be used to mix a number
of material—fuel streams in fixed percentages or to have
these percentages calculated, depending on settings. The
number of inputs (n_inputs) must be set before the
object is used. The number of fractions
(mix_part[1..n_inputs]) equals the number of inputs.
Independent of the number of inputs, there is only one
output (out). The list of components (compounds) in
the inputs and the output are equivalent. For each
component, the output flow is the sum of the inputs
(out.f[i] = SUMTin[1..n_inputs].f[i]]), or

" inputs
four = fin(i)
i=1

The mass balance for each individual component
must be maintained. (in[j].quantity =
mix_part[j]*out.quantity). An additional constraint is
that the input fractions must sum up to 1.0
(SUM[mix_part[1..n_inputs]] = 1.0). The heat contents
and economic cost thus must be calculated separately.
Here, they are both expressed so that the respective cost
and heat for the output equals the sum of the input cost
and heat.

MODEL materialfuel_mixer
Declarations:

n_inputs IS A
integer _constant;
IS A materialfuel
_stream;

mix_part[1l..n_inputs] IS_A fraction;

in[1..n_inputs], out

Rules:
in[1..n_inputs].compo ARE_.THE_SAME

unds, out.compounds ;

FOR i IN cmbli]: out.f[i] =

out.compounds SUM[in[1..n_input

CREATE sl.f[i1];

END FOR;

FOR j IN mix[j]:

[1..n_inputs] in[j].quantity =

CREATE mix_part[j]*out
.quantity;

END FOR;

SUM[mix_part[1..n_inputs]]=1.0;
out.cost=SUM[in[k].cost | k IN
[1..n_inputs]];
out.heat=SUM[in[k].heat | k IN
[1..n_inputs]];

5.2.7. Material—fuel grinder

The materia—fuel grinder represents grinding raw
meal, clinker, etc., and transforms one inflow of coarse
material into one outflow of ground material. Grinding
consumes e€lectrical energy according to the mass
ground. The energy constant (ED) is used to calculate
total electrical power consumption
(electricity_consumption). The quantity decreases due
to dust generation that is given by a dust-generating con-
stant (DG) defined as a fraction of the out quantity. A
total cost adding is modelled as a fixed cost per mass
unit (COST) to cover maintenance and operation plus
the cost of electricity. This total cost is then added to
the cost for the material entering the grinder so that the
specified material cost always corresponds to the cumu-
lated production cost at the specified location.

The compositions of the input and output material—
fuel stream (in and out) are the same. The heat content
is not changed during grinding.

MODEL materialfuel_grinder

Declarations:

in, out ISA
materialfuel_stream;

electricity_consu |S_A energy_rate;

mption

dust_generation |S_A massrate;

cost_adding IS_A cost_per_mass;

ED IS_A energy_per_mas
s.constant;

DG IS.A mass_per_mass.c
onstant;

COST IS_A cost_per_mass.c
onstant;

ELECTRICITY IS A cost_per_energy

_COST _constant;

Rules:

in.compounds, ARE_THE_SAME;
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out.compounds
in.state.y,
out.stately
dust_generation = out.quantity *x DG;
out.quantity = in.quantity -
dust_generation;

electricity_consumption = out.quantity *
ED; (x cost/s x)

cost_adding = COST +
ELECTRICITY_COST * ED; (*
cost/kg *)

out.state.cost = in.state.cost +
cost_adding; (* cost/kg *)

out. state.heat = in.state.heat;

ARE_THE_SAME;

5.2.8. Clinker production

The clinker production transforms one inflow of
material and fuel into one outflow of material and one
outflow of kiln exhaust gas. The module contains
relations and constants for cost adding, electricity-con-
sumption and dust-generation.

Clinker production requires a specified amount of heat
per mass unit that must be supplied by the fuel. In this
model, a constant value per mass unit clinker entering
the clinker production is used. This amount was there-
fore calculated and set as a requirement on the heat con-
tents in the fuel entering the clinker production.
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The clinker production object contains equations that
relate input mixture, output clinker and emissions to
each other. From a modelling technique point of view,
clinker production does not contain any additional con-
cepts beyond what has already been discussed.

5.2.9. Cement plant

When all the objects were defined, they were connec-
ted to form a model of the foreground system: the
cement manufacturing plant at Slite. To start with, al
the necessary objects were instantiated and some of the
constants within them were set, such as the number of
inputs for al mixers and site specific values. Then they
were connected in accordance to the structure of the con-
ceptual model, which resulted in the model in Fig. 3.

5.3. Problem formulations

The model built is neutral in the sense that it does not
include any specific problem to be solved. Such a prob-
lem formulation, consequently, needs to be done separ-
ately. The formulation contains the following:

e A distinction between what to treat as locked vari-
ables and what to treat as free variables, depending
on the desired solution and the calculation method

chosen.
e A connection between input data and the model. Usu-
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aly locked variables are initiated with suitable
input data.

e The calculation method to use, which sorts equations
and calculates the result by invoking a mathemat-
ical agorithm.

Problem formulations will, in the following, be exem-
plified for the two specific operationa aternatives dis-
cussed in Section 3. To be able to find a solution, the
number of constraints (equations) needs to equal the
number of free variables. The number of equations is a
conseguence of the model, and thus, the parts of the
model and how these are connected. Initially, al vari-
ables in the model are free. In the problem formulation,
some of them are locked so the desired simulations will
be possible to perform.

53.1. Case A

The reguirements in Section 3, further interpreted in
Section 5.1, result in the locked variables, according to
Table 6. These variables are set to the values indicated,
which represent the input. With this problem formu-
lation, the number of variables will equal the number of
equations and the system, thus, becomes possible to
solve. The used solver in ASCEND is QRSlv, which is
a non-linear algebraic equation solver [23].

532 CaseB
Here, variables are locked according to Table 7 and
constants are set to the values indicated. Even here the

Table 6
Constants and input data for Case A

number of variables will equal the number of equations
and the system will thus be possible to solve.

5.4. Model validation and simulation

To use the model, i.e. to predict the environmental
load, the product performance and the economic cost, a
prerequisite is that the model acts as the system it rep-
resents. Before using the model and accepting the infor-
mation generated, the model has to be validated. It has
to be determined whether or not the model gives a good
enough description of the system’s properties to be used
in its intended application. When satisfactory correspon-
dence between the situation, the model and the model-
ling purpose has been attained, then the use and
implementation are appropriate. However, validation of
the model will continue throughout the user phase. Once
a future operational aternative has been tested and
implemented, the simulated information will be com-
pared with the observations of the real system. It is then
possible to improve the model. Consequently, the val-
idity and relevance of the model may be continuously
improved.

Validation is an intrinsic part of model building and
the validity of the model has to be assessed according to
different criteria. Technical validation of the foreground
system model, i.e. to ensure that the model contains or
entails no logical contradictions and that the algorithms
are correct, was done as the model was built.

To validate the foreground-system-model, and in

Variable to lock Initiated data Comment

Quantity of cement 1000 kg/s Product quantity

Fraction gypsum for cement grinding 0.052

Fraction limestone for cement grinding 0.044 Implies 90.4% clinker for cement grinding
Fraction pet-coke in fuel mix 0.20 Implies 80% coal in fuel mix

Fraction sand in raw meal 0.02

Fraction marlstone in raw meal 0.71 Implies 27% limestone in raw meal

Heat required by clinker production 3.050 MJkg Related to the inflow of raw mea fuel
Table 7

Constants and input data for Case B

Variable to lock Initiated data Comment

Quantity of cement 1000 kg/s Product quantity

Fraction gypsum for cement grinding 0.045

Fraction limestone for cement grinding 0.04 Implies 91.5% clinker for cement grinding
Fraction pet-coke in fuel mix 0.23

Fraction tyres in fuel mix 0.22 Implies 55% coal in fuel mix

Clinker LSF quality factor 97

Clinker SR quality factor 29 Only two out of three quality factors can be set

Heat required by clinker production 3.050 MJkg

Related to the inflow of raw meal fuel




90 K. Gabel et al./ Journal of Cleaner Production 12 (2004) 77-93

addition show examples of model usage and results, we
performed simulations on two real operationa alterna-
tives. These have actually been used at the plant, and
hence there were measurements to validate against. The
simulations are those given in Sections 3 and 5.1 and
are illustrated in Figs 4 and 5, respectively.

For each of the two operational alternatives, data gen-
erated with the model was compared with observations
and measurements of the real system. The simulated
values were related to the real values. A selection of
simulated values as a percentage of measured values is
shown in Figs 6 and 7 for the two real operational alter-
natives, respectively.

The two simulations show that the model can simulate
the desired operational aternative and generate the
desired information. The simulated and calculated infor-
mation shows, in comparison with the real system’'s
properties, satisfactory correspondence. We have a valid
general model of the Slite plant that can be used to pre-
dict product performance, the economic cost and
environmental load.

For metals, the model has been technically validated.
But due to large variations in metal content in raw
material and fuel and insufficient empirical data to
describe the emissions of metals we did not achieve total
correspondence between simulated and real metal emis-
sions.

6. Discussion and future research

It has been shown that the modelling approach used,
i.e. acalculational non-causal model, physical modelling
and an object oriented modelling language can greatly
enhance modularity, flexibility and comprehensiveness.
Together with an appropriate simulation tool, e.g.
ASCEND IV, thistechnique provided aflexible and gen-
eral-purpose model of a cement manufacturing process
for process and product development purposes.

The tool generates the desired information, i.e. pre-
dicts the environmenta load, product performance and
economic cost, by simulating the desired operation alter-
native. For the two operational aternatives tested, the
model generated information which shows satisfactory
agreement with the real system’s properties. We are of
the opinion that since all entities are described inde-
pendent of each other, they can easily be combined and
connected to represent another plant or manufacturing
process.

To avoid sub-optimisation, the model was to use alife
cycle perspective. The cement manufacturing process
from cradle to gate was divided into a foreground sys-
tem, the “gate to gate” part, and a background system.
To complete the model in the life-cycle aspect, the back-
ground system model, which is modelled using normal
LCI technique [17] and stored in the SPINE [24] format,
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Fig. 6. Simulated values as a percentage of measured values. A selection for operational alternative A.

needs to be connected to the foreground model. Since
the background model is both linear and time inde-
pendent (static) it can be expressed with the techniques
and tools discussed in this paper.

As a result of the chosen modelling approach and
simulation tool the model, as such, has potential for
development. One especialy interesting area for future
research is to develop the model and the problem formu-

lations so that it will be possible to perform optimisation
with the model. The library of re-usable problem formu-
lations and model parts can be developed and extended.
Other modelling developments would be adding non-lin-
ear and dynamic relations which transform input into
output, and increase the level of detail in the model,
where applicable.

Naturally, the validation process of the cement model
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1,00
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Fig. 7. Simulated values as a percentage of measured values. A selection for operational alternative B.

will continue to increase the validity and extend the
interval for which the model is valid. The next step thus
will be to use and implement site specific models,
including the emission of metals, in the cement industry.
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Abstract

Table 1: Symbolic conventions.

The uncertainty and cost of changing from a fossil-fuel Haseciety

. . . Type Name  Description Unit
to a. hydrogep based society are. considered to be extensmgtﬁ_s to Variables, - Capacity kg, kg/time unit
the introduction of Fuel Cell Vehicles (FCVs). The absentexisting constants f Factor _
profitable refueling stations has been shown to be one of #jerrharri- l Lifetime yr
ers. This paper investigates methods for calculating amaptransition p (P::)ci‘tii price $$}time unit
. . . T
frpm a gaso_llne refuel.lng station to future methane and (bgein. com- s Size kg, kg/time unit
bined use with an on site small-scale reformer for methampatticular, u Consumption kg/time unit
we look into the problem of matching the hydrogen capacitg single 3 Time yr _
refueling station to an increasing demand. Based on an askiun x El]ff’i‘(’:"iency kgftime unit
ture development scenario, optimal investment strategiesalculated. Subscripts Z Annuity
First a constant utilization of the hydrogen reformer isuassd in order d Daily, per day
to find the minimum hydrogen production cost. Second, whersice e Electricity
erations such as periodic maintenance are taken into af;coptimal ;q Em;’r:gnlz?sé ﬁ;‘g’a" par(s)
control is used to concurrently find both a short term equiptwariable fe Hydro’gen fuel cell
utilization for one week and a long term strategy. The reisudt mini- fo Hydrogen refueling pump
mum hydrogen production cost of $4-6/kg, depending on tmetrax of g Methane
h Hydrogen

re-investments during a 20 year period. The solution is shimyield

. ; o . hc Hydrogen compressor
minimum hydrogen production cost for the individual refoglstation, he Hydrogen electrolysis
but the solution is sensitive to variations in the scenasi@meters. hf Hydrogen refueling

Keywords: Hydrogen; Infrastructure; Investment; Optimiza- hr Hydrogen reformer
tion; Refueling station hs  Hydrogen storage

! % Investment
k Peak demand to average
. m Maintenance
1 Notations n Nominal
P Progress ratio
. . . . s Scale, scaling
Table 1 shows the symbolic conventions used in this papes. Th t Technology development
letterse, f etc. are variables and constants, which may be further w Weekly, per week
specified using sub and superscripts. The symho}, indicates, = Inflexion point
: y Superscripts ¢ Input flow
for example, the weekly capacity of the hydrogen reformet: A o Output flow

ditional scenario parameters starting with a capital tette dis-
cussed in section 3.2 below. The currency used is USD ($).

ply may be reduced; the potential of zero local emissionis thi¢

2 Introduction
use of fuel cells.

Hydrogen is considered a promising future fuel for vehi¢le,
3]. Three main arguments are used to support this assettien:  stacle to the introduction of hydrogen fuel cell vehiclesfull-
potential of reducing greenhouse gases from the transpcidrs scale hydrogen infrastructure with production facilitiasdistri-
greater energy supply security, i.e. hydrogen can be pestiuc bution network and refueling stations is costly to build een-
from many energy sources and hence the risk of shortage of supture of constructing a hydrogen refueling infrastructuoasti-

The absence of a hydrogen infrastructure is seen as a major ob



tutes a long-term, capital-intensive investment with grearket by electrolysis using grid electricity. Taking this intormider-

uncertainties for fuel cell vehicles. Therefore, reducihg fi- ation, a large number of station configurations are possitie
nancial risk is a major objective of any long-term goal toldhai cluding the one indicated in figure 1. The model developeddoe
hydrogen infrastructure [4]. however, only consider the core components, i.e. reforooen-

Ogden [5] has described several hydrogen supply options. In pressor and hydrogen storage. The model is flexible witheigtsp
vestigations have also been made for large scale produation to refueling station types, e.g. car, truck or bus, and tafge
hydrogen [6]. A number of studies of cost and technology for a station locations, e.g. central, suburb or countryside.
hydrogen infrastructure have also been carried out [7,.818{v-
ever, to the knowledge of the authors, no studies aimed anind

the most profitable investment strategy for the individediliel- Gasoline I Gasoline storage | DX Gasaline yehicies |
ing station have been done. Methane —

There are several reasons to focus on the individual hydroge gas "’@ Mertiape gashebicl
refueling station. Car owners are used to accessing a nletwor s
of stations. For the ordinary car owner to accept a hydrogen- Electrolysis
refueling infrastructure, accessibility of service siag will be M* Eldctricity X
crucial [10]. Therefore, a network of hydrogen stationd néled Comprosser
to be built in order to reach the target of about 15-20% of the t AT
tal number of refueling stations having a hydrogen fuelbpgon Hydrogen storage [} [ Aux electricity
for consumers. In the EU, the estimated need is 15-20,000 ref S N consumption
eling stations by 2020 (a maximum of 100,000 stations are pre |Filling'E
dicted by 2020 for EU1H [11]. At present there are only about

Refueling station border

110-120 hydrogen stations around the world, some of whieh ar

quite small [12]. Several researchers have proposed that-sm

scale reforming of methane could be a feasible transitiatesyy

for th.e mtroduc;uon of_hydrogen fuel [13, 14]. _ formed to hydrogen at the site and stored for delivery to aleki It
Th!s study aims at finding the most economic mvestment—str{:\t is also possible to produce hydrogen from electricity byietdysis or

egy, i.e. the lowest cost for the hydrogen produced, for an in gjectricity from hydrogen using a fuel cell.

dividual hydrogen refueling station featuring on site drsahble

reforming of methane. The question is to what extent and when

to build the parts of the station, satisfying an increasiegdnd . .

of hydrogen. The method developed may be used to find optimal3'1 The parts of the refueling station

investment strategies in other cases in which the numbey-of d The parts of the refueling station, see figure 1, are consitier
namic states is reasonably low. Our calculations begin #1020 have the characteristics given in table 2. This table giza dn
and cover 20 years, until 2030. actual produced equipment in the year 2000. In this paper we
have used figures from the Simbeck [15] study. Another compa-
rable study is the GM Well-to-Wheel Analysis of Energy Usd an
Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems
A European Study (GM WtW) [16].

The purchase price is calculated using the scale function

Figure 1: Possible refueling station configurations. Methane is re-

3 The refueling station

Methane is chosen as the main energy carrier for the refyelin
station since:

— 1_fs fs
1. Methane can be produced from fossil fuel, which is, and P=PnCn =57, @)

will probably continue to be, one of the cheapest production yhere, is a scale factor, further discussed in section 3.2. Using

sources for hydrogen in the short term. this function an existing piece of equipment with capacityand

dgurchase price,, is scaled to any sizes] to obtain an estimated

purchase price. The function (1) applies to all parts of #fa-r

eling station except the filling pump, which is not scalablg b

3. Methane is relatively easy to transport and can be reddrm purchased on a piece-wise basis. Regardless of size, afi-equ
into hydrogen gas. ment is considered to have a certain expected lifetimé&lsing

_ ) _ ) _ the expected lifetime, the weekly annuity is calculated as
4. 1t is possible that running vehicles directly on methane

might be a favourable alternative as an intermediate step to Fow = D )
ward hydrogen usage. o ’

2. Methane can be produced from renewable resources, e.
from different types of wood and plants.

1
52(1 — 5 p75aye)
After reforming, the produced hydrogen gas can be com-whereD is the real rate of interest. The total weekly equipment
pressed and stored, or used directly in fuel cells on siteeifor  cost, including maintenancéf), is then
ther local consumption or distribution on the electricitidgvhen
electricity prices are high. On the other hand, when eleityri Pw = faw P(1+ fm). (3)

prices are low it might be more profitable to produce hydrogen In reality each part of the refueling station is chosen from a

1The present 15 EU member states finite number of available brands and sizes. By using scaling




Table 2: Refueling station parts data. Figures are from Simbeck¢kBgpt lifetimes and progress ratio, which are assumed.

Part Reformer Compressor Hjy store  Fill pump Electrolysis Fuel cell
Lifetime(l) 15yr 15yr 15yr 20 yr 30 yr 11.4yr
Nom. capacityy,) 42 kg/h 42 kg/h 263 kg 48 kg/h 42 kg/h -
Nom. purchase cogtf,) | 38,774 $ h/kg 7,792%h/kg 592%/kg 83,117 $/pc 25,665 $h/kg ,98R$/kW
Scale factorfs) 0.75 0.80 0.80 - 0.72 -
Maintenance cosf(,) 0.05 0.06 0.05 0.05 0.02 0.1
Efficiency() 0.286 kgH2/kg NG 0.99 0.99 0.99 0.02 Kg2/kWh  18.33 kWh/kgH2
Electricity usefe) 0.02 2.492 0 0 - -
Progress ratiof,) 0.8 0.9 0.9 0.9 0.9 0.9
functions (1) for the purchase price, the set of availabléspzan The functionR(t) is purely exogenous and therefore uncertain.

be replaced with one continuous variable. Compared to atralu  This uncertainty will influence the results, as is discusaeskc-

ing a number of discrete alternatives, this representsréfisignt

saving in computational complexity.

former, the substance entering is methane an
drogen.

3.2 Scenario parameters

tion 6.

Figure 2 shows the refueling characteristics during 24 iotir
The efficiency in table 2 indicates the relation between the operation for a typical gasoline statioR(). Together with the
mass entering and leaving the equipment. In the case of the redaily mean hydrogen consumptiali{ ;) and ratio peak-demand

d that leavimg i

to averagef’ 1), an absolute demanded refueling capacity is cal-

culated. This sequence is the hydrogen demand when 100% of
the vehicles use hydrogen. To adjust the demand to intermedi
ate situations the sequence is scaled using the S-curwet{igh
results in the daily maximum hydrogen demand curve

The scenario parameters reflect assumed developmentsfin the
ture and are given in table 3 together with their respectalaas.

0.12

wh,5a(t) = R(t) Fr.q Una Fy . (6)

Table 3: Scenario parameters. The electricity price is assumed to be
higher during daytime (6 am-10 pm) than at night (10 pm-6 am).
0.1
Name  Description Value  Unit
B S-curve slope 0.3 -
D Real rate of interest 0.05 1iyr
Feont  Contingency cost factor 0.1 - § oos
Feng Engineering permitting cost factor 0.1 - §
Fy Refueling characteristics factor - g
Frk Refueling ratio peak-demand to average 1.12 - E 0.06
Fyen  Include land cost factor 0.2 - 5
P Cost of manufacturing*” unit - $ g
Pe Electricity price vector (6am-10pm) 7.8 c/kwWh £ 004
Electricity price vector (10pm-6am) 3.9 c/kWh
Py Methane gas price[17] 47 c/kg
P, Cost of manufacturing.** unit - $ 0.02
R(t) Relative number of hydrogen vehicles attimet - -
Tx Inflection point of the S-curve 10 yr
Un,d Mean hydrogen consumption 1000 kg/day
Vi Cumulative production at*" unit - - o
V(t) Number of vehicles at time t - -
Viot Total nr of vehicles at.,, 4 - -

a crucial variable for optimization. It is probably also st

Time [h]

Figure 2: Refueling curve for 24 hoursF;,4). This curve gives the
distribution of hydrogen demand in fractions of the totahsemption
The number of hydrogen vehicles refueling at the station is for one day. The figures are based on statistics for a typasbline

difficult parameter to predict. In this study the S-curve

_ Vtot
14 e BG-T:)

V(t)

is used.V;,; is the total number of vehicles using the refueling
station, 7T, the S-curve inflection point, an# the slope. The
relative number of hydrogen vehicles at the station is thus

1

B = e mem

refueling station. [15]

The demand also differs between weekdays according to ta-

(4)

ble 4, which creates a periodic sequence of one week for tak to

hydrogen demand,, ,.,). Both the 24 hour refueling curve and

the variations between weekdays are based on statistiatypr
ical gasoline refueling station. We assume that this beinasi
independent of fuel type and therefore will persist whenrbyd
genis used in place of gasoline.

Itis assumed that equipment becomes cheaper with incgeasin

®)

production and technology development, which is adjustede



The hydrogen part of the refueling station, see figure 1, ean b
divided into a number of units that can be optimized sepbrate
The question of whether or not the local fuel cell and eléetro
ysis parts are profitable depends on the price of electravity
Day Mon Tue Wed Thu Frn Sat Sun methane. If the total cost including maintenance (see $3pwer
Fraction | 0.14 0.14 014 0.15 0.6 014 013 than the difference between produced and bought elegtaoid
hydrogen respectively, it is profitable to invest in the exgjve
equipment. For the fuel cell the profit is then

Table 4: Distribution of hydrogen demand in fractions of the totahco
sumption for one weekH;y,.,). The figures are based on statistics for a
typical gasoline refueling station. [15]

- ,
cost to manufacture the" unit P, according to Po Spe  Prew + APhrw
I

Tfc = Pe Sfc — (10)

P, = P, V(s fr/log2) @ Nhr Mfe 168

i.e. almost linearly dependent on the investment, with ne up
per boundary. The same reasoning applies to the electolysi
An intermediate situation may appear when the purchase pfic
electricity is high, whereas the selling price is low. It inighen
only be profitable to produce electricity for the consumptad
the refueling station.

whereP; is the cost of manufacturing the first uriit, the cumu-
lative production ab!" unit andf, the progress ratio factor. It is
assumed that the number of hydrogen refueling stationsifeum
lative production) will be 5,000 in 2010 and 50,000 in 203d a
will follow the S-curve (4). We have assumed an increaseén th
number of refueling stations using steam reforming fron®6 @ L i )
50,000 in the world from the year 2010 to 2030. These numbers, | "€ Methane storage facility is sized in accordance with how
are based on the predictions about when the fuel cell vetiiate ~ reduently the methane gas tank is filled at the refuelingcsta.
ket will open up and on the number of station needed. A reports'n_ce the estimated methane consumption is known, thecbgno
presented by E4tech [18] and funded by the UK Department 0fdellvery can b_e calculated. A large volume of methar_1e dedive
Trade and Industry and the Carbon Trust predicts that "iftne &t the same time would cost less per kg, but requires a larger
dles are overcome, the mainstream propulsion marketisseagre ~ Storage tank. This is a separate problem that can be solved us
to open up after 2010”. Melaina [19] made a preliminary analy ing optimization techniques. For.the remainder of this ysl'wn.i
sis of the sufficient number of initial hydrogen stationstia Js, ~ therefore assume a constant delivery of methane from aiipépel
and concluded that between 4,500 and 17,700 hydrogenratatio ©" Similar construction. _ _ _
would be required in the US to initiate a hydrogen infrastipe ~ The refueling pump can be dimensioned according to the max-
for fuel cell vehicles. We justify our estimate of 50,000 hyd  'Mum amount refueled. The daily mean hydrogen consumption
gen stations by the fact that we consider the whole world and i Uh.a is distributed throughout the day corresponding to the re-
a later stage than do Melaina. fueling curve (figure 2). A maximum rate of 0.11 is reached
The total decrease in relation to the present-day purchise p  Petween 3 pm and 5 pm. The busiest day of the week is Fri-
owing to increased production and technology developnent i day, reaching 0.16 of the weekly consumption. The ratio peak

thus demand to averagé ;.), which is estimated to 1.12, should also
be considered. All in all the number of refueling pumps reegii
_ (50000R(t))Uee fr/loe2) is
feq,t(t) - 5000(10g fp/log2) (8)
= (10R(t))Coalfr)/ 1oa(2)) crp(t) = ceil(2.87R(1)), (11)

wheret is the time from year 2010. Within any real mass where the function ceil rounds to the nearest integer grétzae
production-based learning process, there will be a trdfibes or equal to the operand.

tween system standardization and modularity of systematigpa The remaining parts of the refueling station are the ondsinvit
However, in this model we have used a simplification, as indi- the shaded area in figure 1 and are collectively called "tme"co
cated in equation 8. This core consists of reformer, compressor and storage tank

With respect to interest rates, future costs can be cakmlilat Considering only the core, hydrogenis delivered to vekioldy.
from present day values using the Present Day Value Caorecti  This means that all the hydrogen produced by the reformér wil
go through the compressor to the storage tank. The size of the

pde(t) = 1 . 9) reformer and compressor will thus have to be the same.
(1+ D)t Owing to a non-linear price decrease in the equipment over
time (7), the core problem cannot be further split into siie d
3.3 Initial considerations tribution between reformer and tank, plus time and exteri-of

. . vestments. The relative cost between reformer/compressbr
We assume that, from the outset, no economic costs, i.e. svagestorage tank will change over time.

and rent for land, from the gasoline part of the refuelingicta

are shared with the hydrogen part and vice versa. Hencee# do

not matter if the gasoline refueling station is present drwioen 3.4 Core model

the hydrogen station is being built. In reality some resesican

probably be shared between the gasoline and hydrogen garts arhe model describing the core, see figure 1, is quite simpde an
the refueling station. includes only one state, the hydrogen storage. It can beidedc



by

Bns = Xh— T,
xiﬁs = xlﬁmhmhc
Thellfp = Thf

zpp = Hfw

Th, = Tpg (12)
subject to the constraints

0 < a3, <cpr

0 < aj, < e

0 < Zns < cns

0 < xl]}p < cfp- (13)

The rest of this paper addresses the problem of choosing the

size of reformer/compressor versus storage volume oveioone
many investments over time for the core of the refuelingatat
The model developed will be used in the optimization in the-su
sequent section.

4 The optimization problem

Optimal control can be used to optimize a system over a certai
time interval. Given a dynamic model of the system, an object
function, and constraints, a path from one state to anotrebe
calculated where the objective function is at a minimumyvbg
non-dynamic design problems using optimization techrségae
common practice, see e.g. [20] or [21].
model is static, i.e. does not change over time, such tedesiq
are sufficient.

In this study, however, we are interested in investmentptan
and internal properties that change over time, such agatiihn
curves and transients for hydrogen generation. Therefale a
namic optimization technique is used, see e.g. [22].

4.1 The objective function

The criterion function to be minimized is based on the totatp
duction cost for hydrogen, which consists of costs for eonipt,
methane and electricity. In addition the number of investisie
has to be taken into account.

The total weekly equipment cost is the sum of the cost for each

part of the refueling statiorp(,, see (3)), i.e

peq,w(seqati) = pr(seq) feq,t(ti)-

Veq

(14)

The loans are of the annuity type, which make the equipmestt co
independent of time.

Since consumption is given by the refueling demand (.,),
production during the given time frame can be calculatede Th
total weekly methane gas cost is then

168
= Zt:l(xh»fvw)Pg R(t’w)
Nfp Mhs Mhe Nhr

168

= Z(mgﬂv) Py R(t.w)

t=1

Pg,w (tw) s (15)

wheret,, indicates the time (in years) when the weekly cost is
calculated.

In the case where the

For electricity the price varies throughout the day and se¢ed
be evaluated on an hourly basis. The weekly cost is thendscale
using the S-curve (5). The total weekly electricity costhisst

168

pe,w(tw) = ]‘()P(;TR(I‘,‘U)) = Z(l‘hﬁﬁw) (16)
t=1
fhs.e fhc,e fhr,e
(frpe+ — + pZ}R(tw).
Nip NipThs — NfplhsThe

Note that both the methane and electricity costs are indigren
of the size of the equipment.

In this study the production cost for hydrogen is averagest ov
the whole investment period as

— 1 N EV Seq,ti Peq,w + Pg,w (tw) + Pe,w (tw)
Ph = ==
N iigl ($h,f,1u) R(tw)

tw=1

, (A7)

whereN is the number of weeks for the investment period. This
production cost takes into account the timing of the investts,
making the purchase cost of all parts of the refueling stadie-
crease over time (8). It does not, however, correct futusgsco

to present-day values (9). It is possible to calculate thdrdyen
cost in other ways. One way is to use the formula above and add
the Present Day Value Correction (9), which gives

X
N 2

tw=1

pdc(tw) Dy Seqiti (Peg,w) + Prg,w + Petw

25 @ pw) R(tw)

Another totally different approach is to distribute thealotost

pr - (18)

evenly over the whole investment period, i.e

N ZVS t,-(Zv eq(peq(l + fﬂ”L)pdC(tw)))fa,w
pn = = . (19
> I (g Rl 19

In this study the average production cost of hydrogen (17) is
used to find the objective function. Expanding the functibig
clear that not all the terms are necessary to generate tipe sha
of the production cost. The termsg, ,, andp. ., can be summed
up separately and are independent of size of equipmegy)tgnd
time for investment;), giving a constant contribution. In ad-
dition the sum over;, ¢, and N are constants. Omitting these
constant terms yields the objective function

2y Seqits (Peq,w)
R(tw) '

N

b

tw=1

Poby(ti) (20)

Expanding the objective function, it can be written as

N
povj ~ D (1+e Bt

tw=1

Y (et Y,

V Seqoti Y eq

(21)

where( is a constant. Since this is a sum over exponentials of
convex functions, the objective function is also convex[23

In the case when the objective function (20) does not provide
enough information to find an unambiguous optimal pointait ¢
be augmented , e.g. by variations in utilization of equiptnen



This would result in a smoother utilization curve. Adding.e.
the quadratic variations in the hydrogen reformer outputildo
then give

M—-1

Pobj2 = Pobj +o Z (xzr(k) - x(;w*(k + 1))27
k=1

(22)

wherea is a weight factor and/ the number of hours to con-
sider.

4.2 The constraints

The constraints for the optimization problem are develdpeuth
(12) and (13). By integrating the first equation of (12), whic
controls the storage of hydrogen at the refueling statios fitst
constraintis found. Since consumption statistics forebfig are
given on an hourly basis for one week, it is possible to usmea-ti
discrete formulation where integration is replaced by swation.
The model (12) becomes

ty

Ths = Z(‘r;w - x;)LS)
to
xéw xngnhr
ThsNip = Thfo- (23)

By assuming a periodicity of one week for all variables imgd,
it is only necessary to takex 24 = 168 points (hours) into ac-
count.

The method of transcription used in the time continuous case

to eliminate time [22] can be replaced in this discrete probby
cumulative summation. This results in the following coastts:

t

Z(x;zs - 'r?w)

to

> 0,to<t<ty

Ceq = Tegq- (24)

The first equation ensures that the stored amount of hydroget

does not become negative, while the second ensures thatthe fl
through each piece of equipment does not exceed the capacity

A way of extinguishing transients of the state variableis t
require that the initial value equals the end value, i.e

xhs(tf). (25)

Zns(to)

One inconvenience is that in order to precisely follow thé ca
culated path, the storage containers have to be initialbdfiio a
certain extent. In reality this is not very important sinle initial
transients decay rapidly.

Other requirements, e.g. periodical maintenance stops-of r
former or required initial amount of hydrogen stored may &le
taken into consideration by adding one or more constraints.

5 Results

This section presents the results from the optimizatiohéntivo
cases discussed. Both cases are solved using Tomlab [24]. Nc
gradients or Hessians are provided, instead estimates @ie m
using numerical differentiation within the optimizatiorethod.

5.1 Case 1: constant utilization

In case 1, constant utilization of reformer and compressoon-
sidered. The capacity of the reformer/compressgy)(is deter-
mined from the weekly average demand and the hydrogen storag
capacity by finding the minimum of the sum of net input to the
hydrogen storage tank, see (26).

168
Chr — Zt:l(xhafww) (26)
) 16877hc77hs77fp
t
Ths (tO) = - Hltln Z(Chrnhc - l‘h,f,w/(nfpnhs))
to
t

chs = max > (enrtine = Th ./ (Mgp1ns)) + s (to)

to

The result is an unconstrained optimization problem thathe
described by

rr%in Do (ti)- 27)

6.2

o
)

o
T

ydrogen production cost [USD/kg]

48

4.6

4.4

1 1 1 1 1
2 4 6 8 10 12 14 16 18 20
Second investment time [year]

4.2 1 1 1 1
0

Figure 3: Case 1, 2 investments, hydrogen production cost as a func-
tion of second investment time. Note the discontinuitietina¢s 8.5 and
13.2. These are caused by an increase in the number of refymlimps
(11).

If only one investment is made, the characteristics areuealc

The optimizations in cases 1 and 2 are carried out for a onelated directly using (26) and no optimization is carried.olrt

week operation for each investment. For intermediate taves
ments, the demand is estimated using the S-cuR(g)), and

the case of 2 or more investments, the curves in figures 3 and 4
illustrate the effect of investment time.

equipment is assumed to have decreased in price according to The problem in case 1 is solved using a quasi-Newton method

(7) with scenario parameters as in table 3. Note that the joiée
crease is faster for the reformer than for the rest of thepegent.

implemented in the Tomlab function ucSolve. The resultdf8r
investments are as shown in table 6, figures 5 and 6.
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Figure 4: Case 1, 3 investments, hydrogen production cost as a func-

tion of second and third investment time. . .
Figure 5: Case 1, 1 investment, stored hydrogen and storage output.

Absolute cost produced hydrogen [USD/kg]
T T

20 T T T
Table 5: Result of optimization, case 1. The total cost is the cost for
equipment, methane and electricity for the entire inveatrperiod. The 15 |
mean distance cost is calculated from the use of OH&@d 0km for fuel 2
cell vehicles. 2 1
No of investments 1 2 3 s : i
Investment time [yr] 0 0,5.7 0,3.9,84 ‘ ‘ ‘ ‘ ‘ . i
Cost equipment [$] 3,868,763 2,961,677 2,793,208 0 2 4 6 8 timel[gear] 12 14 16 18 2
Total cost [$] 16,296,295 15,026,375 14,791,149
Mean cost hydrogen[$/kg] | 6.03 4.37 4.14 2000 Capacily - Demand for hydrogen (kgweeld
Mean distance cost[$/10km] 0.60 0.44 0.41
Reformer size [kg/h] 45.47 9.2+36.3 5.8+10.9+28.7 6000 J
Storage size [kg] 606 123+484 77+146+383 .
Initial storage [kg] 271 55,271 35,100,271 § 2000 - -
Refueling pump no [pcs] 3 1+2 1+0+2 2
2000 - n

0 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20

time [year]

The mean distance cost is based on a consumption of 0.1k
H./10km for a fuel cell vehicles. This is an estimate of the hy-
drogen consumption for a small fuel cell vehicle and is ordgal
for comparison with petrol fueled cars.

gi:igure 6: Case 1, 1 investment, hydrogen production cost and capacity
demand.

Further investments have very little effect on the mean &ydr  resulting constrained non-linear optimization problem

gen production cost, as can be seen in figure 7.

tmsl,?r Pobj2
t
sty (zh,—2h) = 0,tg<t<ts

to

5.2 Case 2: variable utilization Ceg 2 Teg
zhs(to) = wns(ty)

| o , : , zhs(to) = 100
n Case 2 utilization of equipment is parametrized and deter
mined by the optimization algorithm. The chosen speciabcon il o
tions in this study are 100 kg hydrogen storage initially anhthe tZ;r The = 0, (28)

end of each week (periodic boundary conditions), and a weekl
stop for maintenance from hours 75 to 87 during the week. In-was solved using a Sequential Quadric Programming (SPQ)
vestments are done on 1 and 2 occasions during the investmemhethod [25], as part of the NPSOL [26] package running in Tom-
period. Further investments have not been investigateddse lab [24].

2, owing to the computational complexity and time involv&te The results from the optimization give the size of equipment
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Figure 7: Case 1, hydrogen production cost for 1-10 investments.

(table 6), running pattern of the facility (figure 8) and puodd
hydrogen price and utilization curves (figure 9). The soluti
shows good utilization of storage; the stored hydrogen arhou
frequently drops to near zero.

Table 6: Result of optimization, case 2. The total cost is the cost for
equipment, methane and electricity for the entire inveatrperiod. The
mean distance cost is calculated from the use of OHk@d Okm for fuel

cell vehicles.

No of investments 1 2
Investment time [yr] 0 0,5.6

Cost equipment [$] 4,707,805 3,724,066
Total cost [$] 17,522,971 16,151,907
Mean cost hydrogen [$/kg] | 6.74 4,72

Mean distance cost [$/10km| 0.67 0.47
Reformer size [kg/h] 57 10.0, 50.0
Storage size [kg] 939 199, 873
Initial storage [kg] 63 90, 64
Refuelling pump no [pcs] 3 1+2

5.3 Sensitivity of the solution

To evaluate the sensitivity of the solution in case 1 (withv&it-
ments) to changes in the scenario parameters, calculatiere
made with slightly changed values from the settings in t&le
Table 7 shows the results in relative sensitivities, i.e.

min; (z + 02)

min;(z) (29)

SENSy =

wheresens, is the relative sensitivity value with respect to prop-
erty z. The optimization procedure is abbreviateth;.

Owing to the similarities in the objective function, the sien
tivities also are valid for case 2.

Hydrogen reformer output 1 [kg/h]
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Figure 8: Case 2, 1 investment, throughput and stored hydrogen.

Absolute cost produced hydrogen [USD/kg]
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Figure 9: Case 2, 1 investment, hydrogen production cost and capacity
demand.

Table 7: Relative sensitivity at the optimal point, case 1 with 2 sive
ments. The numbers given are relative sensitivity at theragbtpoint,
see (29).

Property name Investment time  Hso production cost
sensitivity sensitivity

Real rate of interest9) -0.04 0.10

Progress ratiof;,) 0.26 0.85

S-curve slopeB) -0.42 0.47

S-curve inflection poinf(’;) | 0.34 0.58

Total units ate,,q (Viot) 0.02 -0.23

Mean hydrogen condj, 4) | -0.01 0.002

6 Discussion

Itis possible to use optimization and optimal control tceditine
optimal investment strategies for a hydrogen refuelingistdor
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Figure 10: Case 2, 2 investments, throughput and
Investment 1 at t=0.

stored hydrogen:
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Figure 11: Case 2, 2 investments, throughput and stored hydrogen:
Investment 2 at t=5.6.

vehicles. The results indicate a hydrogen production doste-
fueling station with on site reforming of methane rangingnfrr
$4.1 to 6.0/kg, depending on the number of investments agd sp
cial requirements of periodic maintenance, etc. This ishm t

Absolute cost produced hydrogen [USD/kg]
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Figure 12: Case 2, 2 investments, hydrogen production cost and
capacity-demand.

Table 8: Other studies of on site reforming of methane

Study $/kg Size
Schoenung [27]| 5.7 400 kg/d
Knight [4] 1.79 250 cars/d
Thomas [7] 11-2.2 180 -2720 kg/d
Simbeck [15] 4.4 470 kg/d
Ogden [5] 1.7-5.6 400 cars/d

production, the refueling station may not survive that loAdpet-

ter approach would be to start with a smaller capacity, aed th
increase it over time. The results show that the most reaéisb-
nomic production cost situation can be achieved at appratéin

4 to 5 investments (figure 7) and that little is to be gaineduyy f
ther increasing number of investments. Increasing the reuimb
investments can also be more favourable from a risk manageme
point of view. It is then possible to adjust the investmeangbe-
fore the next investment is made, using the same method but wi
more recent assumptions.

The sensitivity analysis shows that tHe production cost is
quite sensitive to changes in some of the scenario parasneter
The most sensitive one is progress ratio, i.e the price dsere
for equipment. Since the progress ratio is not known in adean
large changes in the predicted production cost may resuie O
way of handling this situation is to add uncertainty estisab

same range as previous findings, see table 8. The main differall scenario parameters and make an optimization that thkes

ence is that this study uses a function that increases amer(4)

to estimate the number of hydrogen vehicles refueling asthe
tion, which makes the estimated production cost an averagre o
time. In other studies, the cost is based on maximum utitinat
The idea underpinning the method developed is to be ablesto ea
ily change assumptions and scenario parameters accoaliag t
given case. The method can then be used for investment panni
in individual refueling station cases.

uncertainties into account.

Some factors in the cost function can be improved to make the
results more realistic, e.g. maintenance of the equipmehtex
sources split between the gasoline and hydrogen parts offire
eling station. Another area that can be improved is the effimy
factors for equipment;.,. In reality, efficiency is dependent on
other factors, e.g. flow through the equipment. Also, initgél-
ture developmentis not known. By using stochastic vargaiel

When one large investment is made, hydrogen produced willmake a stochastic optimization, uncertainties can be egptkin

initially become very expensive. Although the productiastc

the result in terms of probability functions.

will have dropped to a more reasonable level after 10 years of When the number of investments increases, so does the com-



putational time. For case 2 with variable utilization, edétions
with more than 2 investments already result in unrealilijiéang
computational time. Since the problem is convex in the objec
tive function (but not in the constraints), other more spksgd
optimization algorithms may be used. In addition, grademd
Hessian information can be provided to further reduce cdezpu
tional time.

The above model can probably also be used as a starting
point when doing investment optimization for multiple reku
ing stations in a community. This optimization problem ig no
as straightforward as the one discussed in this paper: here f
tors such as local competition between refueling statiodswaw
this affect sales (i.e. supply-demand curve) have to bentake
account. Another option would be to investigate under wirat ¢
cumstances the complete station layout (figure 1) would bk pr
itable.

2]

[3]

[4]

7 Summary and conclusions

[6]

1. With the assumptions made in this study, it is possible to

produce hydrogen with on site reforming at a price ranging

from $6.0/kg for one investment to $4.1/kg for 3 investments
over 20 years when continuous production is considered.

[7]

2. Special requirements, e.g. specified storage in the biegjn
of the week and periodic maintenance stops of the reformer,
can be accounted for but will make the produced hydrogen [8]
more expensive.

3. Investment timing is most sensitive (in order of magnéud
to changes in the scenario parameter S-curve steepBgss (
S-curve inflection pointt;) and progress ratioff). It is
less sensitive to changes in methane and electricity prices
interest ratesiP) and S-curve total number of units#@t,4
(‘/tot)-

4. The hydrogen production cost is most sensitive (in orfler o
magnitude) to changes in progress ratfg)( scenario pa-
rameter S-curve inflection point,() and S-curve steepness
(B). Itis also quite sensitive to changes in S-curve total
number of units at.,.q (Vio¢) and interest ratedX).

[9]

[10]

[11]

5. The method developed in this paper can be used for optimal
investment planning in other areas with flow processes that
can be described with state equations.

[12]
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Abstract

The prediction of macroeconomic time series by means of a form of fully
recurrent neural networks, called discrete-time prediction networks (DTPNs),
is considered. The DTPNs are generated using an evolutionary algorithm,
allowing both structural and parametric modifications of the networks, as
well as modifications in the squashing function of individual neurons.

The results show that the evolved DTPNs achieve better performance on
both training and validation data compared to benchmark prediction meth-
ods. The importance of allowing structural modifications in the evolving
networks is discussed. Finally, a brief investigation of predictability mea-
sures is presented.

Key words: time series prediction, recurrent neural networks, evolutionary
algorithms

1 Introduction

Prediction of time series is an important problem in many fields, including
economics. Due to the high level of noise in macroeconomic time series,



models involving two parts, one deterministic and one stochastic, are often
used. One such method is ARIMA [1]. For one-step prediction, the results
obtained by these simple predictive methods (such as exponential smooth-
ing, which is a special case of ARIMA models), are difficult to improve much
due to the high levels of noise present. However, even a small improvement
can translate into considerable amounts of money for data sets that concern
e.g. an entire national economy. The aims of this paper is (1) to introduce a
class of generalized, recurrent neural networks and an associated evolution-
ary optimization method and (2) to apply such networks to the problem
of deterministic prediction of macroeconomic time series, with the aim of
extracting as much information as possible, while keeping in mind that the
noise in the data introduces limits on the achievable performance.

2 Macroeconomic data

Two different data sets were considered, namely US GDP (quarterly varia-
tion, from 1947, first quarter to 2005, second quarter), and the Fed Funds
interest rate (monthly values, from July 1954 to July 2005). The raw GDP
and interest data were first transformed to a relative difference series, using
the transformation

Zraw (V) — Zyaw (t — 1)

Zro(t) = ——7—47)

(1)

Next, this series was further transformed using a hyperbolic tangent trans-
formation
Z(t) = tanh(CTHZRD (t)) (2)

For the GDP and interest rate series transformations, the values Crg = 25
and Ctg = 5 were used, respectively. The aim of the hyperbolic tangent
transformation was to make the data points as evenly distributed as possible
in the range [—1, 1].

Both data sets were divided into a training part with M, data points, and
a validation part with M., data points. During training, only the results
(i.e. the error) over the training data set were used as feedback to the
optimization procedure (see below). The rescaled GDP data set contained
233 data points. For training, steps 16-115 were used (M, = 100) and for
validation, steps 126-225 were used (M, = 100). During training, the first
15 steps were used to initialize the short-term memory of the DTPN. A
similar initialization procedure was applied during validation. For the Fed
Funds data set, with 612 data points, steps 26-475 were used for training
(M, = 450) and steps 486-605 (M. = 120) were used for validation.



3 Methods for prediction
3.1 Discrete-time prediction networks

Neural networks constitute a commonly used blackbox prediction model.
In most cases, feedforward neural networks (FFNNs) are used. In such net-
works, the computational elements (neurons) are placed in layers. The input
signals (i.e. earlier, consecutive values of the time series) are distributed to
the neurons in the first layer, and the output signals of those neurons are
then computed and used as input in the second layer etc. The output of a
given neuron ¢ is computed as

N

z(t+1l)=0 bi—i—Zwijyj ) (3)
j=1

where b; is the bias term, w;; are the weights connecting neuron j in the
preceding layer to neuron ¢, N is the number of neurons in the preceding
layer, and o is the squashing function, usually taken as the logistic function

_ 1
1t eer’

(4)

o1(2)
where c is a positive constant, or the hyperbolic tangent
o2(z) = tanh cz. (5)

Given a set of training data, i.e. a list of input vectors and their corre-
sponding desired output, such networks can be trained using gradient-based
methods, such as e.g. backpropagation.

However, there are fundamental limitations in the prediction that can be
achieved using FFNNs, due to their lack of dynamic (short-term) memory.
Stated differently, an FFNN will, for a given input, always give the same
output, regardless of any earlier input signals [2], [3]. Thus, such networks
are unable to deal with situations in which identical inputs to the network
(at different times along the time series) require different outputs. Earlier
work [2] has shown that dynamic short-term memory does make a difference
in neural network-based time series prediction.

Furthermore, the requirement that it should be possible to obtain a gra-
dient of the prediction error, in order to form the derivatives needed for



updating the weights (during training), restricts the shape of the squashing
functions. Without such restrictions, squashing functions such as e.g.

03(2) = sgn(z), (6)

and
tanh(z 4+¢) if z< —c
oa(z2)=4¢ 0 if —e<z<c (7)
tanh(z —c¢) if z>c¢

could be used.

To overcome the limitations of FFNNs, it is possible to introduce feed-
back couplings in the networks, transforming them into recurrent neural
networks (RNNs). Such networks have been used in many financial and
macroeconomic applications, see e.g. [3], [4]. A problem with many stan-
dard training techniques for neural networks is that they require that the
user should set the structure of the network (i.e. the number of neurons and
their position in the network), a procedure for which one often has to rely
on guesswork and rules-of-thumb [5]. An alternative training procedure is to
use an evolutionary algorithm (EA) which, if properly designed, can handle
both structural and parametric optimization [6].

In this paper, a new kind of network (and an associated evolutionary
optimization method), well suited for the problem of time series predic-
tion, will be used, with dynamical memory, arbitrary structure, and (in
principle) arbitrary squashing functions. Each of the n neurons in these
networks which, henceforth, will be called discrete-time prediction networks
or DTPNs for short) contains arbitrary connections from the nj, input ele-
ments and from other neurons (including itself). In addition, each neuron
has an evaluation order tag (EOT) such that, in each time step, the output
of the neurons with the lowest EOT values is computed first, followed by
the output of the neurons with the second lowest EOT values etc. The out-
put neuron, i.e. the neuron with highest EOT (arbitrarily chosen as neuron
1) is evaluated last. Thus, the equations for neurons with the lowest EOT
become

Min

Jii(t + 1) =0 | b;+ Z wi?lj (t) + zn: Wij T j (t) s (8)

j=1

where w;;‘ are the input weights, w;; the interneuron weights, and b; is
the bias term. I; are the inputs to the network which, in the case of time
series prediction, consist of earlier values of the time series Z(t), i.e. I;(t) =



Z(t — j +1). The number of inputs can thus be referred to as the lookback
(L) of the DTPN. For neurons with the second lowest EOT, the equations
look the same, except that z(t) is changed to x(¢+1) for neurons with lowest
EOT etc. Finally, the output neuron gives the following output

l‘l(t—F 1) =0 | b +Zw11];lj(t) +w11x1(t)+2w1jxj(t+l) R (9)
j=1 j=2

since, at this stage, all neurons except neuron 1 have been updated. It is
evident that the EOTs introduce the equivalent of layers. Thus, while most
DTPNs will contain many recurrent connections, an FFNN is a special case
of a DTPN. More precisely, a DTPN is equivalent to an ordinary FFNN if
and only if (1) all squashing functions are of the same type (either o7 or
02), (2) only neurons with the lowest EOT values receive external input,
and (3) w;; (i.e. the weight connecting neuron j to neuron i) is equal to
zero if EOT(j) > EOT(3).

3.2 Benchmark predictions

In order to evaluate the results obtained using DTPNs, a comparison will
be made with two standard prediction techniques, namely autoregressive
moving average (ARMA) and exponential smoothing. The general simple
ARMA(p, ¢) model

(M) Z(t) = O(A)e(?), (10)
where A is the lag operator, ¢ is the disturbance Z — Z, and
d(A)=1—piA— ... — ¢, AP, (11)
and
O(A) =1401A+ ...+ 0,A9, (12)

gives the one-step prediction Z(t + 1|t)

P q

Z(t+10t) =D ¢ Z(t —i)+ Y be(t — ). (13)

i=0 i=0

¢; and 0; are parameters to be estimated in order to find the lowest error.
The exponential smoothing technique (without trend) is described by the



| w (interneuron weights) | w" (input weights) | b |c |k (sigmoid type)l EOT|

Figure 1: A chromosome encoding a DTPN.

ARIMA(0,1,1) equation
(1-MNZ@#) =1 —01A)e(t). (14)
This model gives the prediction

1-6;

Z(t) =0 Z(tt — 1)+ (1 —01)Z(t).  (15)
As a special case, if §; = 0, the naive prediction Z(t+1|t) = Z(t) is obtained.

4 Evolutionary algorithm

The DTPNs were generated using an evolutionary algorithm (EA) [7]. The
EA used here employed a non-standard chromosomal representation, shown
in Fig. 1, in which each gene represented a neuron in the network, encoding
its interneuron weights (w;;), input weights (wj), bias term (b;), sigmoid
parameter (c), sigmoid type, and EOT. During the formation of new individ-
uals, crossover was only allowed between individuals containing the same
number of neurons. Several different forms of mutations were used, both
parametric mutations modifying the values of the parameters (including
the EOT) listed above, and structural mutations which could either add or
subtract a neuron from the DTPN. No upper limit was set on the number
of neurons. A lower limit of 2 neurons was introduced, however. In addition
to the mutations just listed, a sigmoid type mutation was introduced as
well, allowing a neuron to change its sigmoid type by randomly changing
the index k of the sigmoid oy, (see Sect. 3.1 and Eq. (17) below). Finally, in
order to allow (not force) the EA to produce sparsely connected networks,
some runs were carried out in which parametric mutations of interneuron
weights, input weights, and biases not only could modify the value of the
parameter in question, but also (with low probability) could set it exactly
to zero. Thus, these mutations essentially functioned as on-off toggles, and
were therefore called zero-toggle mutations. The number of input elements



(and therefore the lookback L) was fixed in each run. The fitness measure
F used by the EA was taken as the inverse of the RMS prediction error over
the training set, i.e. F' = 1/egms where

Mex

envis = | 7 D (200 - 7)) (16)
Ti=1

Note that the use of an EA implies that any form of sigmoid function can
be used in the networks. In addition to the four functions o1 — o4, a fifth

sigmoid, namely
cz

T 1+ (cz)?’

was also allowed in the simulations reported below.

o5(2) (17)

5 Prediction results

A large number of runs were carried out, using different number of inputs
and different EA parameters in order to test the ability of the evolutionary
algorithm to generate DTPNs with low prediction error for the two data
sets under consideration.

The results are summarized in Table 1. The table shows the prediction
error for the DTPN with lowest validation error. In addition, the prediction
errors obtained using naive prediction, exponential smoothing, and ARMA
(all with optimized parameter values), are shown.

As is evident from the table, the best DTPNs outperform the two other
prediction methods. Table 2 gives a more detailed description of the best
DTPNs, obtained with different values of n;,. For comparison, note that the
best training errors obtained with exponential smoothing were eflq = 0.2512
for the GDP data and efig = 0.3477 for the Fed funds data. Using the ARMA
model, the best training errors were g4 = 0.2108 and efp, 4 = 0.3248,
respectively.

6 Predictability measures

The fact that the DTPNs outperform the benchmark prediction methods
does not imply that these networks extract all the available information
in the time series under study. One way of determining whether addi-
tional information can be extracted would be to devise a measure P(t)
of predictability such that, in addition to the prediction Z(t + 1) of the



Data set

EN

€ES

€ARMA

€DTPN

Fed funds interest rate

GDP

0.2018 0.1901 0.1887 0.1837
0.1771 0.1490 0.1473 0.1305

Table 1: Minimum errors over the validation part of the data set, obtained
using naive prediction (ex), exponential smoothing (egs), ARMA
(earMma ), and DTPNs (eprpn). Only the results for the very best

DTPN are shown.

val

Data set NN Poero n np eSrpn €5TeN
Fed funds, run 1 2 000 7 5 0.3072 0.1837
Fed funds, run 2 2 025 5 5 0.2968 0.1881
GDP, run 1 5 000 4 4 0.2095 0.1423
GDP, run 2 4 000 6 4 02173 0.1399
GDP, run 3 3 0.00 5 4 0.2131 0.1360
GDP, run 4 3 020 11 5 0.2094 0.1305

Table 2: Examples of the performance of evolved DTPNs. The second col-
umn shows the number of inputs to the network, and the third col-
umn shows the probability of a mutation being of the zero-toggle
type, i.e. a mutation that sets the parameter in question to zero.
The fourth column shows the (evolved) number of neurons, and
the fifth column shows the (evolved) number of layers (np), i.e.
the number of distinct EOT values in the evolved network. The
two final columns show the errors over the training and validation
parts of the data set.

next value in the time series, one would obtain an estimate of the error

e(t+1) = Z({t+1) — Z(t + 1). Ideally, the measure should be such that
P(t) = f(e(t + 1)) where f is a known, monotonous function.

Several different predictability measure can be formed. The amount of
(local) information in a time series can, for instance, be estimated analyti-
cally using random matrix theory, based on the correlation matrix formed
from the delay matrix D [8]. In addition, various empirical measures can



Figure 2: The best evolved network (run 4) for the prediction of the GDP
series. Input elements are shown as squares and neurons as filled
circles. The neurons are arranged in layers based on their EOT
values. For clarity, only the inputs to one neuron are shown. Solid
lines indicate positive weights and dotted lines negative ones.

also be generated, based on the prediction errors obtained in previous time
steps. An investigation was made involving both the analytical measure and
a few different empirical measures, applied to the rescaled difference series
Z(t). However, in all cases, the results were negative, i.e. the proposed pre-
dictability measure showed near-zero correlation with the actual prediction
error, and therefore these measures will not be described further here.

7 Discussion and conclusion

This investigation has shown that it is possible to improve, albeit only
slightly, the predictions obtained from standard prediction methods using a
generalized version of neural networks (called discrete-time prediction net-
works, DTPNs) with the possibility of adding a short-term memory through
feedback couplings.

In earlier work [2], continuous-time recurrent neural networks were consid-
ered for time series prediction. The DTPNs introduced here do not require
continuous-time integration, i.e. the network output is obtained by discrete-
time equations rather than differential equations, making the evaluation of
the networks much faster, while still allowing a rich dynamical structure,
including dynamic short-term memory.

The use of an EA for the optimization of the networks removes all restric-
tions regarding both the behavior of individual neurons as well as the struc-
ture of the network as a whole, while still allowing standard feedforward
neural networks as a special case.

The importance of structural modifications in the network is illustrated



by the fact that, in any given run, the structure of the current best net-
work varied significantly during the run. The final networks often contained
rather few neurons and used only a few input elements, illustrating another
advantage of using recurrent networks: because of their ability to form a
short-term dynamic memory, such networks need not use as many inputs as
a feedforward network, thus also reducing the number of networks weights
and hence the risk of overfitting.

The best network for prediction of the GDP series, shown in Fig. 2, had
a slightly more complex structure. However, in the run generating that
network, zero-toggle mutations were used, and indeed the resulting network
was far from fully connected, and therefore had, in fact, a somewhat simpler
structure than would have been suspected on the basis of the number of
neurons involved.

The fact that the predictability measures all gave negative results was
expected, and it indicates that the DTPNs really do extract all, or almost
all, information available in the time series.
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Abstract However, these benefits can only be exploited if several
barriers to a large-scale introduction of hydrogen fudloel

One of the major barriers to the widespread use of hydrogenhicles are reduced. One of the major barriers is the lack of a
is the lack of a hydrogen infrastructure, an important com- hydrogen infrastructure [6]. The construction of a fulkfe
ponent of which is the individual hydrogen refueling statio  hydrogen infrastructure with production facilities, atdisu-
The long-term profitability of the hydrogen filling statios i  tion network, and refueling stations is likely to be veryityps
a key issue for the success of the transition to a hydrogen in-The venture of constructing a hydrogen refueling infrastru
frastructure. ture constitutes a long-term, capital intensive investrett

The topic of this paper is the problem of finding the optimal great market uncertainties for fuel cell vehicles. Therefo
investment strategy for a single hydrogen and hythane refu-reducing the financial risk is a major objective of any long-
eling station giving minimum production cost, while match- term goal to build a hydrogen infrastructure [7].
ing the hythane and hydrogen capacity to a demand generated Ogden [8] has described several hydrogen supply options.
from three stochastic scenarios over a 20-year period. Investigations have also been made for large scale pragtucti

A minimal resulting production cost between USD 2-6/kg of hydrogen [9, 10, 11]. Many studies of cost and technology
for hydrogen and USD 1-1.5/kg for hythane (depending on for a hydrogen infrastructure and for individual statiomasé
preferences concerning unsatisfied demand, flexibility) etc also been carried out [12, 13, 14, 15, 16, 17, 18, 19]. The
was found. It was also found that the production cost and H2A analysis group at the US department of energy (DOE)
the amount of unsatisfied demand constitute conflicting ob-has recently developed two H2A delivery models: the H2A
jectives so that, for example, if the total hydrogenand agth ~ Delivery Components Model and the H2A Delivery Scenario
demand is to be satisfied, the production cost of hydrogenModel [20].

will be unrealistically high. The effect of uncertainties the The above studies mainly consider hydrogen as a fuel from
constructed scenarios is minimized by the use of stochastican environmental and economic standpoint in a large scale
optimization techniques. perspective. By contrast, Forsberg and Karlstrom [21] in-
Keywords: Hydrogen; Hythane; Infrastructure; Invest- vestigated the most profitable investment strategy forthe i
ment; Optimization; Refueling station dividual hydrogen refueling station featuring on-site #ma

scale reforming of methane [21]. The question was when,
. and to what extent, to build the parts of the station, satigfy
1 Introduction an increasing demand of hydrogen. The result was a mini-
mum hydrogen production cost of 4-6 USD/kg, depending on
Hydrogen is a promising fuel for vehicles. Four main argu- the number of re-investments during the 20-year-period con
ments support this assertion: (1) The potential of reducingsidered. This paper is a continuation and an improvement
greenhouse gases from the transport sector; (2) An increasgf [21]. The improvements explored are mainly:
in energy supply security, since hydrogen can be produced

from many energy sources so that the risk of a shortage of 1. The earlier study relied on single-objective optimiaati

supply may be reduced; (3) Hydrogen has higher energy ef- of the production cost and hence produced one optimal
ficiency than do other fuels; (4) The use of hydrogen leads investment strategy. In this study, multi-objective op-
to the possibility of zero local emissions with the use ofl fue timization is used for finding Pareto optimal fronts for
cells[1, 2, 3]. The magnitude of the benefits of hydrogen fuel contradictory objectives. For decision-making it is more
cell vehicles has been assessed by Karlstrom [4] and Sanden  favourable to have a set of solutions, each represent-
and Karlstrom [5]. ing different possible investment alternatives. Preflgrab



these should lie on the pareto-optimal front of important

objectives, Table 1: Strategic parameters. The electricity price is as-

sumed to be higher during daytime (6 am-10 pm) than at night
2. The sensitivity analysis in the previous study showed (10 pm-6 am). All parameter values are estimates except nat-
that the results were quite sensitive to variations in the Ural gas price, which is from [22] and electricity price, whi

strategic parameters and in particular to the estimatedis from [23]

number of refueling vehicles (represnted by the S-curve,

X - . . Name Description Value Unit
i.e. a curve indicating the estimated technology adapta- & S-curve siope 03 -
tion, see below). In this study we present three scenar- © ggﬁ{igaézn‘g;r‘ctgsfff;mr 8-1 Lyear
. . . . cont . -
ios with considerably different future developments. For  F.,,, Engineering permitting cost factor 0.1
H Faen Include land cost factor 0.2
each scenario we gen_erate a Igrgt_a numbfar of samples and F-}qﬂy Mass ratio hydrogen in hythane 603
make use of stochastic optimization to find the best so- Number of time steps 175 200
lutions P, Electricity price vector (6am-10pm)  0.10 USD/kWh
' Electricity price vector (10pm-6am)  0.08 USD/kWh
. . . . Png Nature_\l gas price ) 0.97 USD/kg
3. Hythane, i.e. natural gas mixed with a small fraction of ¢ Start time of calculations (2010) 0
. . . : : ty End time of calculations (2030) 175 200
hydrogen, is a viable |ntgrmed|ate alternaﬂye fuelforve- ;1 Inflection point of the S-curve 10 year
hicles. Whereas the earlier study only considered hydro- w Scenario sample - :
. . Xhy Hydrogen demand (from scenario) kg/h
gen, in this study both hydrogen and hythane are taken X! hythane demand (from scenario) kg/h

into account.

4. In reality equipment is available in a (finite) number of o

tinuously sized equipment. By contrast, this study ap- fween 4,500 and 17,700 hydrogen stations would be required

plies presently available sizes of equipment, thus achiev-t0 initiate a hydrogen infrastructure for fuel cell veh&ldhe

ing a higher degree of realism. In addition, the costs of €Stimate of 50,000 hydrogen stations in 2030 used here is mo-

equipment, electricity, and natural gas have been updatedivated by the fact that this investigation takes the whabeld

to current (2006) values. into account. Also, in this study, the market reaches a high

level of maturity, further motivating the estimate for thenm-

The most important issues in this study are to reduce the ef-ber of stations in 2030.
fect of uncertainties for scenario parameters and to iflenti The decrease in purchase price, in relation to the present-
connections between production cost and other results. Thalay purchase price, owing to increased production and tech-
calculations cover 20 years, from 2010 until 2030. If an in- nology developmentft) for a given type of equipmery; is
vestment is made, it takes place at the very beginning of theapproximated as
year, i.e. an investment is in year 1 occurs onitfieof Janu-

(log fp,eq/ log2)
ary 2010. (50000£(t))

frieq(t) = 5000108 fp,eq/ log 2)
- (10R(t))(log(fp,eq)/1og(2)).

()

2 Strategic parameters Here, f, ., IS @ progress factor for the equipment in ques-

. . tion, i.e. a factor that determines the purchase cost decay
The strategic parameters influence how the generated future,.. o the specified equipment. Equation (2) is used for all

scenarios are calculated and arg therefor_e crucial to t“he_reequipment parts of the refueling station, regardless @ diz
sults. These parameters and their respective values &® giv should be kept in mind that the functigi. is purely exoge-

in Table 1. _ _ nous and therefore uncertain. This uncertainty will infceen
The number of produced units of reformers, electrolysis ine results. as is discussed in Section 6.

etc. is considered to equal the number of hydrogen refueling Using thepresent day value correction factor, (C,), future
stations, which is estimated to reach 5,000 in the year 2010.qsts can be discounted to present day value as

and 50,000 in the year 2030, and to follow the S-curve )
(1 + D)t/8760° )

wheret is the number of hours from the start of calculation,
to, andD is the real interest rate. Furthermore, toasecu-

| Cylt) =

RO = e samy

(1)

in between.t is the time from year 201@;, the S-curve in- ! X . )
flection point andB the slope. The estimation concerning the tV€ Present day value correction vector is defined as

growth of hydrogen fuel cell vehicles is assumed. The growth C=[Cp(1) Cp(2) ... Cr(N)]. 4)
of number of stations is based upon the estimated growth ofTh fh f thi | .
hydrogen fuel cell vehicles and their hydrogen demand. A e average of the components of this column vector, I.e.
report presented by E4tech [14] and funded by the UK De-
partment of Trade and Industry and the Carbon Trust predicts
that "if the hurdles are overcome, the mainstream propnilsio
market is expected to open up after 2010”. Melaina [24] made can be used to calculate the present value of evenly diggdbu
a preliminary investigation concerning the sufficient nemb  costs. ForD = 0.1, C(t) = 0.4466.

N
) = G ©)



2.1 Scenario generation Scenariol

45 T T T T T

= Hytan ic cars
= = Hytan ic buses

The number of vehicles visiting the single refueling staii® 10 L by jccars |
a stochastic variable which is estimated in three scendrios
these scenarios, the following vehicles are considered:

35

30

1. Ordinary combustion engine powered buses running on
hythane.

25

20

Number of vehicles

2. Ordinary combustion engine powered cars running on

hythane. 15

3. Ordinary combustion engine powered buses runningon ~ *
hydrogen. .

4. Ordinary combustion engine powered cars running on S T T S e s 5 b B B
hydrogen. vear

5. Fuel cell driven buses running on hydrogen. ) ) ) . )
Figure 1: Number of vehicles in scenario 1 as a function of

6. Fuel cell driven cars running on hydrogen. time. Data based on S-function-smoothened values from Ta-
ble 3.
7. Fuel cell driven scooters running on hydrogen.

The first four vehicles represent intermediate solutiosedu After reforming, the produced hydrogen gas is compressed
until the fuel cell driven alternatives have become dominan and stored. The high storage pressure then makes it possi-
The above vehicles are considered to have filling data and stable to refuel hydrogen without further compression. Some
tistics in accordance with Table 2. of the hydrogen can be used for mixing with natural gas to
Using these data, three possible future scenarios are givefiorm hythane, which is refueled using a special hythane dis-
in Table 3. The first scenario emphasizes hythane and hydropenser. The mixture of hydrogen in hythane is here set to 3%
gen powered buses as an intermediate alternative. Thedecorby weight. When electricity prices are low (i.e. at night), i
scenario focuses on hydrogen cars, primarily with combasti  might be more profitable to produce hydrogen by electrolysis
engines early on, and fuel cells toward the end of the periodthan through the reformer. For this option an electrolyser ¢
considered. In the third scenario hydrogen fuel cell podere be added. All in all, this is a flexible layout capable of sim-
scooters are in focus. In all three scenarios hydrogen flel ¢ ulating many types of possible future hythane and hydrogen
cars are used in the longer perspective. refueling stations, see Figure 2. The model is also flexible
For interpolation between the three time periods specifiedWith respect to refueling station types, e.g. car, truckyus,
in Table 3, the S-curve has been used, giving the smooth curveéind refueling station locations e.g. central, suburbacoan-
shown in Figure 1. The smoothness obtained through the in-tryside, by changing the strategic parameters.
terpolation is likely to be valid for the car purchases ofug® The model developed and the optimisations made involve
of individuals, but may, of course, be violated e.g. in theeca the components within the refueling station. Componernis ou
of large corporations that may acquire several vehiclesh(su side the station are considered to be already present.
as buses) at the same time.
For each scenario a set of sampl&8)(is generated using
Poisson distributions with parameters from Tables 2 and 3.3.1 The parts of the refueling station
With a time step length of one hour, the total number of steps
is N = 24x365x20 = 175, 200 for each sample. Forthe sce- Table 4 gives data on the parts of the refueling station from
nario generation, hydrogen filling is separated from hythan Figure 2. Data are taken from actual produced equipment in
filling. The resulting hydrogen and hythane demand is de- the year 2000 [25].
notedX,r and X, r, respectively. The reformer, electrolysis, and compressor are chosen from
a finite set of available sizes, while thi, store as well as
the hythane anéll; dispensers are purchased on a piece-wise
3 The refueling station basis depending on the required capacity. Some equipment
cannot be used below a certain minimum level, which is indi-
The task of the refueling station is to provide fuel for hydro cated by the minimum usage ratg ) and given as a fraction
gen and hythane vehicles. As the main energy carrier, daturaof maximum capacity. For the reformer, the minimum usage
gas is chosen. One reason is the already present natural gaste equals the minimum capacity. For ftig store, the min-
refueling network. Moreover, natural gas is one of the cheap imum usage rate indicates the minimum storage level. Below
est production sources for hydrogen in the short term. Thethis minimum storage level the pressure drops too low to be
hythane dispenser part of the refueling station is an interm dispensed to vehicles. For sizes different from the nominal
diate alternative on the path to hydrogen vehicles. capacity ¢,), the purchase price is calculated using the scale



Table 2: Filling statistics for vehicles visiting the sieglefueling station. ic denotésternal combustion engine and fc denotes
fuel cell powered engine. AT denotes the time between fillings, afiddenotes the time of day at which filling takes place. The
numbers are estimates.

Vehicle type

hythane [kg/filling]

H, [kg/filling]

AT [days] Ta[h]

hythane ic bus
hythane ic car
Hydrogen ic bus
Hydrogen ic car
Hydrogen fc scoote
Hydrogen fc bus
Hydrogen fc car

61
6

O OoOO0OOoOo

0
0
60
6
2
40
5

5-8
1-24
5-8
1-24
1-24
5-8
1-24

QR 00WE Wk

Table 3: Number of vehicles visiting the single refuelingtistn for each scenario. ic denoteternal combustion engine and fc
denoteduel cell powered engine. Figures are based on assumptions of different future sioerfar the introduction of hydrogen

vehicles.
Time span | Scenario 1 Scenario 2 Scenario 3
Year 1-5 10 hythane ic buses, 40 hythane ic cars HLOc cars, 2H; ic buses 30 hydro fc scooters
Year 5-10 | 20 hythane ic buses, 1, fc cars 10H; ic cars, 2H; ic buses, 2, fc cars  30H- fc scooters, 2 fc cars
Year 10-20| 40H, fc cars 40H,, fc cars 40H-, fc cars

Table 4: Data on the refueling station parts. Electricitg issthe amount of electrical energy consumed for each kg tpiud for
the piece of equipment in question. ng denotes natural ghp@number of pieces. Data on the hythane dispenser areagstim

from data on the hydrogen dispenser. Figures are from [25].

Part Reformer Electrolysis Compressor Ho store Hythane dispenser Hs dispenser
Life time () 10 year 20 year 10 year 20 year 10 year 10 year
Nom. capacity ¢,) 4.2 kg/h 62.5 kg/h 4.2 kg/h 21 kg 96 kg/h 48 kg/h
Nom. purchase cospg) | 100,000 USD h/kg 34,632 USD h/kg 12,143 USD h/kg 22,500 U8D/p120,000 USD/pc 60,000 USD/pc
Scale factor f5) 0.75 0.72 0.8 - - -

Available sizes 4.2,12.5,62.5kg/h  4.20,12.5,62.5kg/h 5,15, 75kg/h 21 kg 6 kgh 48 kg/h
Maintenance costf(,) 0.07 0.07 0.05 0.01 0.035 0.035
Efficiency () 0.26 kgH2/kg NG~ 0.02 kgH2/kWh 1.0 1.0 1.0 1.0
Electricity use () 1.5 kWh/kg - 2.2 kWhlkg 0.0 kWh/kg 0.0 kWh/kg 0.0 kWh/kg
Progress ratiof(,) 0.9 0.9 0.9 0.9 0.9 0.90

Min. usage ratef) 0.25 0.0 0.0 0.56 0.0 0.0
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Figure 2: Hythane and hydrogen refueling station layout.
Natural gas is reformed to hydrogen on-site and stored for
delivery to vehicles. It is also possible to produce hydroge
from electricity by electrolysis. In this study, only thertsa
within the refueling station are considered.

function

Cn

1-fs
peq(s) = PnS ( s ) = DPn C,}L_fssfs'

(6)

Here f, is a scale factor (see Section 2). Using this function

an estimated purchase price is obtained for a piece of equip-

ment of arbitrary sizes([kg/h]), using the purchase prigs,

for an existing piece of equipment, with capacity. The
function (6) applies to the reformer, electrolysis, and eom
pressor. The expected life timeis used to reduce the in-
vestment cost, should the investment period (2010-203D) en
before the end of life of the piece of equipment in question.

amount of stored hydrogen;,,. Once the stored amount of
hydrogen is known, all other relevant quantities can be cal-
culated directly. Letting: denote the time step, one can ex-
presseys in the form of the difference equatian,s (k+1) =
zhs(k) + 25, — x5, wherez  is the amount leaving the
compressor (see Figure 2), which equals the amount enter-
ing the storage, and? , the amount leaving the storage. The
compressor output comes from the reform¢y. and elec-
trolysis z¢, and taking the compressor efficiengy. into
account one can writep . = (zf, + z}.)nne. In order to
determine the natural gas consumption of the reformjer

the equationz$, = z! n. is added, wherey,, is the ef-
ficiency of the reformer. The amount leaving the hydrogen
storage is the sum of dispensed hydrogégn and the hy-
drogen partFyq, of dispensed hythane,,. Taking the dis-
penser’s efficiencieg,q andn,q into account, this amount
is obtained asj, = 27,/Mha + T4 Fhang/Mya. Now the
total natural gas consumptiar,, from both the hydrogen
xj,,. and hythaner?,(1 — Fg,) part can be calculated as
Tpg = b, + 204(1 — Fhay)/nya- Thus, in summary, the
following equation system is obtained

zhs(k+1) = aps(k) + 27, — 27,
o o o
The = (xhr + xhe)nhcv
o 7
Lhr =  Tpelinrs
o
20 - xzd wdeh2ng
hs P
TIhd Nyd
o
_ i + xyd(l - Fh2y) (7)
Ing = Ty .
MNyd

However, these equations are subject to some constraints.
First of all, there are minimum and maximum levels both for
the flow and for the amount stored. Second, the amount of
dispensed hydrogen and hythang, andz; ;, must be non-
negative and are limited from above by the scenario sample

The reduction in purchase cost is approximated by a lineardemand &,y and X, ¢, respectively). Note that the demand

function (in time). The efficiencies in Table 4 indicate tee r

is not necessarily totally satisfied. All in all, the follavg

lation between the mass entering and leaving the equipmentconstraint equations are obtained

In the case of the reformer, the substance entering is methan
and that leaving is hydrogen.

3.2

The hydrogen/hythane refueling station is assumed to lbe bui
in conjunction with an existing natural gas refueling stati

The supply of natural gas can be delivered by truck or, more
commonly, by pipeline. In any case, the supply is consid-

Initial considerations

ered to be already established and only the cost for the pur-

chase of natural gas is taken into account. All costs for the
hythane/hydrogen part of the station, i.e. land use and syage

fupr Shr < 27 < Chr,
0 < zp, < cChe,
0 < 3. < che
fuhs Shs < Ths < Chs,
0 < x4 < cha,
0 < I'Zd < Cyd,
0 < z7,; < Xny,
0 < a0y < Xyp, 8)

where cpe denotes the hydrogen electrolysis capacity,

are accounted for. In reality some resources can probably beahe compressor capacity,; the storage total capacity;
shared between the natural gas and hythane/hydrogen parts @ndc,q the hydrogen and hythane dispenser capacity, respec-

the refueling station. Initially, the hydrogen storagedssid-
ered to be empty.

3.3 The model

The model for the refueling station in Figure 2 only has one
state variable, i.e. a variable to be integrated, which & th

tively. Note that, for the reformer and storage, the minimum
utilization level is higher than zero. This is due to the thett

the hydrogen dispenser cannot be run below a certain mini-
mum flow rate, given as a ratify, 5, of the maximum capac-

ity spr, QiVING fy nr She @s the minimum allowed flow rate.
For the storage, the hydrogen gas pressure falls belowfccep
able limits for the dispenser if the stored amount is lesa tha



the ratiof,, s of the total capacity,,s, thus makingf,, ns Sns
the minimum amount to be stored.

For the optimization, the state variable is the hydrogen sto
age (1), the control variables are the outputs of reformer
and electrolysis«f,. and«9 ., respectively), and the distur-

policy will have a significant influence on the amount of un-
satisfied demand. The total control vector is then

U = Jvml. (10)

bances are the stochastic variables hydrogen and hythane dd € inner control loop does not have any tunable parameters

mand (X, and X, ¢, respectively).

and is thus not part of the optimal control problem. It is im-
plemented as an obvious optimal solution to keep the size of

the variable space at a minimum.

4 The optimization problem

Direct control parameter mapping methods, i.e. methods

that will need dedicated control parameters for each step, a
The optimization problem under consideration can be for- not used. Such techniques are intractable due to the large
mulated as a discrete-time stochastic optimal-controbpro number (v = 175, 200) of steps involved.

lem [26, 27, 28]. In this type of problem the aim is to find
the controlU that minimises an objective functio(U) for a
dynamical systenf (X, U, W) during a specified time, in the
discrete case indexed by the time step variabl€he system
is also influenced by an independent random disturb&¥ice
The general formulation is

N-1

min J(U) = > vk, X, U, W) + D(Xn, W)
k=0

st Xppr1 = f(k, Xg, Ur, W) 9

(X, U) < 0Vk=1,...N,

wherey(k, Xy, Uy, Wy) is the cost associated with each time
stepk, I'(Xy,Wy) is the terminal cost and, (X, U) rep-
resents simple limits of the state and control variablese Th
controller makes use of the information ggt the contents
of which depend on the type of control system. Foopen-
loop systemg;, = {Xo} Vk, whereas for deedback system,
& = {Xo, Xx},k = 0,1,...,N — 1. For aclosed-loop
System,fk, = {Xo,Xl, ey Xi, Ug, Upy ooy Uk—l}- In this
study, the investment strategy is set priotgcand then fol-
lowed untilt s, thus defining an open-loop control system as
described above.

The problem is to find the optimal investment stratedy
that will subsequently minimise two objective functiong:-f

ther discussed in Section 4.1. An inner control loop is used 4.

to keep the hydrogen storage level at a given amount. In this
loop, a control algorithm is implemented to keep the hydro-

gen storage at a specified level. Since the time constants of

both reformer and electrolysis are very short (of the order o

minutes) compared to the time step (one hour), the desired S.

control action will be considered to take effect immediatel
Due to the rapid dynamics of both reformer and electrolysis,

these devices can be shut down fast and, therefore, there is
no need to keep the storage below 100% as a precaution to

avoid overflow due to slow production adaptability for un-
expectedly low levels of demand. The control algorithm first
calculates the deviation in hydrogen storage from the dat po
(the error), then fills up the storage with available hydrgge
which is the sum of reformer maximum capacity and electrol-
ysis during the period when electricity is cheaper, i.e.hiOp
6am. No electrolysis is used during the remaining expensive

No terminal cosT'(X y, Wy ) is used. Instead the total in-

vestment cost (for the entire life time) is scaled lineaity,
accordance to the usage time of the piece of equipment, see
Eq. (13) below. The system equation and the simple con-
straints have been given in Egs. (7) and (8). The random
disturbancdV is the hythane and hydrogen demand, further
described in Section 2.1 above.

4.1 Objective functions

In this study, the following performance measures are used

1. Production cost per kg for hydrogens. This is the
production cost for hydrogen at the hydrogen dispenser
and is calculated as the sum of all hydrogen related costs
divided by the total amount of sold hydrogef),.

2. Unsatisfied demand for hydrogen .. This is the de-
mand that cannot be satisfied at the hydrogen dispenser
and is a negative measure, i.e. a low amount of unsatis-
fied demand is desirable.

3. Production cost per kg for hythapg;. This is the pro-
duction cost for hythane at the hydrogen dispenser and is
calculated as the sum of all hythane-related costs divided
by the total amount of sold hythang ;.

Unsatisfied demand for hythang,,. Thisis the demand
that cannot be satisfied at the hythane dispenser and is a
negative measure, i.e. a low amount of unsatisfied de-
mand is desirable.

Unsatisfied demand for all hydrogesn; .. The total
amount of hydrogen demand that cannot be satisfied,
i.e. the sum of unsatisfied demand at the hydrogen dis-
penserz, ., and as part of hythang),,, at the hythane
dispenser, .

6. Flexibility p,a. A measure used for quantifying the dif-
ference between the cost for the active scenario, i.e. the
scenario for which the present solutions have been op-
timized, and the passive ones, i.e. the scenarios that are
not part of the optimization.

For the optimization, the production cost per kg for hydro-

hours. The calculated amount is then added to the storagegen «;, , and the unsatisfied demand for all hydrogep.,,

Depending on the demand priority poliey either an attempt
is made to satisfy first the hydrogen refueling demand and
then the hydrogen part of hythane, or vice versa. Tuning this

are used in the objective functiohwhich then takes the form

J(U) = [py Tht,ul- (11)



In order to compute the above performance measures, a numvthe total cost for the shared parts is then

ber of costs and flows need to be calculated. Before carrying

out the calculation, however, an assumption is made (and ap- Pe = (14 Feont + Feng + Fyen) Pejeq +

plied to all calculations below) that each part of the refugl pds X (De,m + Dee + De,mg)- (19)
stations takes on its own expenses. This implies that e®gens

from the hythane part will be added to the hythane produc-  For the hydrogen and hythane specific parts, calculation of
tion cost and the same for the hydrogen part. Parts used irfosts follows the same pattern as in Egs. (15)-(19) aboee, an
both hythane and hydrogen production, such as storage, arés therefore not listed here.

charged according to the usage ratio The resulting production cost per kg of hydroges; and
hythanep, r is now

2 Thf
fh c — . (12)
p Y (zng + FroyTyy) phy = Defrpe + D (20)

D Thf

For each partdg) of the refueling station where the pur-
chase cost is scaled to the used size, i.e. reformer, diggigfo  and

and compressor, the cost is computed as
P P pe(l = fape) + 1y

20 — i pyf: )
u,l)’ (13) > Tyf

(21)
Peq(tis Seq) = freq(ti) Peq(Seq) max( I
“ respectively.

wherel., is the estimated lifetime of the part in question, see It is clear from Eq. (8) that not all the demand from the
Table 4. For those items purchased on a piece-wise basisscenario samples need be satisfied. The difference between
i.e. storage tanks and dispensers, the cost is computed as  the demand and the actual sold amount is called unsatisfied
0—t demand. Three measures of unsatisfied demand are used,

,1). (14) namely (1) hydrogen dispenser unsatisfied demand

2
peq(tiy neq) = ft,eq (t1) PnTeq max(

leg
This implies a linear scaling of the total investment cost fo Thou = Xnj = Tha (22)
the entire estimated I|_fe time to the time it is actually uged (2) hythane dispenser unsatisfied demand
The total cost consists of costs for purchase of equipment,
resources, maintenance and a factor to cover for consinycti Ty = Xyf — 54, (23)

land use and general expenses. It is estimated that theocost f
loans for equipment will cancel the effect of the presemigal  and (3) total unsatisfied hydrogen demand from both the hy-
correction for the sum of instalments. This is exactly theeca drogen dispenser and the hydrogen part of the hythane at the
of annuity loans. All other costs are discounted to presaptd hythane dispenser
using equation (3).

The cost for equipment shared by the hythane and hydro- Thtu = Thyu + Froy Tyu. (24)

en parts is then : I
genp The variance of the above objectivesy, py . zn,. andz, .

Deeq = Z(phr(ti’ Shri) + Dhe(tiy Shei) + between sar_nples is used as a measure c_Jf sensitivity,_ which
Vi can also be interpreted as risk. A high variance would imply
Phre(tis Shei) + Prs(tis nhs.i))- (15) a higher risk. Flexibility is a complex measure that can be

defined in a number of ways [29]. Here, it has been defined
The cost for maintenance is estimated to a specified fractionas
(fm) of the equipment cost, that is

pl D2
pp, +D
1 pha = pf, — ——", (25)
2
1 . .
Do = Y { JmprPhr(Li $hr) | JmohePhe(tisShe) g as the mean difference between the hydrogen production
’ : vi 8760 I 8760 lne cost for the active scenario and the passive ones. A positive
1 value indicates a lower cost for the passive scenarios amd vi
+ fm,h,cphc(ti» Shc) fm,h,sph,s (tv',, nhs) ’ (16) versa.
8760 Ip 8760 lps

which is anN x 1 column vector. The facto$760 is used 4.2 Optimization strategy

to convert the equipment life time from years to hours. The The stochastic control problem (9) is solved with a
electricity cost is calculated from equipment flows as simulation-based optimization technique [30]. For eaah ca

X Y X R X R i didate solutiorU to the problem, the refueling station is eval-
Pee = Pe @ (fenrtfy + fenehe + fenethe + fenstns) A7) yated in a number of discrete simulations under the stochas-
tic influences from samples generated from scenarios. When
all samples have been evaluated, the performance measures
are estimated and the solutions are tuned accordingly.gn th
Pemg = PngTh,- (18) study a genetic algorithm (GA) has been used to optimise the

where® is the element-wise multiplication operator. The nat-
ural gas cost is
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Figure 3: A schematic illustration of the optimization fram

work. Figure 4: The resulting Pareto-front when optimisitigor
scenario 1.

solutions. GAs are optimization algorithms inspired by-bio
logical evolution. Such algorithms can easily be adapted to5  Results
a wide range of optimization problems [31], including multi

dimensional problems [32]. The optimization algorithmdise  This section presents the results from the optimizatiorer
in this study is an elitist non-dominated sorting GA, called three scenarios discussed in Section 2.1. For each scémario

NSGA-II [33], which uses an explicit diversity-preserving optimization has been carried out using the objective fonct
mechanism. For each Pareto-optimal front, this algoriththw  defined in Eq. (11).

remove solutions lying close to each other, while presegrvin

those far from each other. The result is a good spread of solu- . ) )
tions along the front. However, the longer the front, theenor 5.1 Scenario 1: hythane combustion engine
solutions are needed to get a good picture of the details of buses

the curve. Since each solution corresponds to one individua ) _
in the GA, more solutions means a larger population which Scenario 1 emphasizes hythane and hydrogen powered buses
takes longer time to evolve. as an intermediate alternative, after which fuel cell p@sler

cars take over. The hydrogen cost versus total hydrogen un-
satisfied demand from both hydrogen and hythane dispenser
can be seen in Figure 4, in which several interesting saiatio
(discussed below) are marked with their respective numbers
1. A sequence of samples are generated for each scenarili is evident that as the cost decreases, the unsatisfieddema
in the scenario generator. The probability distributions increases and therefore that these objectives are in donflic

The major parts in the optimization framework is the-
nario generator, simulator andoptimiser, see Figure 3. The
steps of the evaluation are

used are discussed in Section 2.1. with each other. The discontinuities represent stepwise in
creases of capacity to the next available size as defined in Ta
2. A number of initial individuals (candidate solutiorig) ble 4.
are randomly generated. As can be seen in Figure 4, Solutions 1 and 2 represent

o . . ) extreme points regarding the two optimization objectives.

3. For each individual (candidate solutidr), the simula- ~ For solution 1, the production cost is at a minimum, 1.96

tor simulates the refueling station (Section 3.3) over the ygpykg. In this strategy, an investment in a small elecsisly

entire investment period. The simulator also contains a gquipment is made in year 18. The strategy results in a large

control algorithm for proportional control of the amount 5 mount of unsatisfied demarids x 10° kg (87% of the total)

of hydrogen stored. and6.0 x 10° (100% of the total) for hydrogen and hythane,
respectively. By contrast, in Solution 2 where the prodrcti
gost is at its maximum (10.5 USD/kg), investments are made
in years 0, 5, and 10. With this strategy, the unsatisfied de-
mand is negligible for both hydrogen and hythane. Further-
5. When all individuals in the population have been evaly- More, the strategy exhibits a preference for reformer use in

ated, the front and objective distance (crowding) sorting th€ beginning of the period, and electrolysis towards tiee en

is carried out, followed by a generational replacement Intermediate solutions include number 3, 10 and 35 in Fig-

4. When all samples for all scenarios have been simulated
the simulator estimates the performance measures an
objectives for the individual.

with crossover and mutation. ure 4. These solutions represent extreme points before the
next possible equipment size is used. If unsatisfied dengand i
6. Steps 3-5 are repeated until convergence. to be kept at minimum, Solution 3 may be a good alternative.

If hydrogen production cost is to be kept low, while still not



Table 5: Investment strategy for solution 3 for scenario 1.
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Scenario 1
T T

Investment no latyear 1 2 atyear 11
Reformer 4.2 kg/h 0.0 kg/h 4k
Electrolysis 0.0 kg/h 12.5 kg/h E]
Compressor 5.0 kg/h 15.0 kg/h 3 35
H, store 84 kg 147 kg g
H- dispenser 48 kg/h 48 kg/h 7 3r
Hythane dispenserl 864 kg/h 864 kg/h S
Investment cost 1.5 x 105USD 9.5 x 10° USD 25
Prio. strategy Hydrogen é i
Total inv. cost 2.4 x 10° USD =
Maint. cost 5.1 x 10* USD S 15l o
= +
T 4
1+ e
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0.2 T T T T

o

3 4 5 6 7 8 9 10 11
Hydrogen production cost [USD/kg]

o
[
N

0.18
0.16
0.14f Figure 6: Hydrogen cost versus hythane cost, Scenario 1.

0.12

2
3 Scenario 1
g o01f 0.4 ‘ ‘
<}
& 0.08f
0.2 4
0.06 AT
L g of SRR
0.04 < 1 420
| 4] 3%,
0.02 Z 02 . 10
s . +
6.04 6.05 6.06 607 6.08 6.09 6.1 6.11 E 3 2
Hydrogen production cost [USD/kg] = —0.4 N
g 6
. . . g -0.6
Figure 5: Histogram for hydrogen production cost for solu-
tion 3. -08
: o T 1 2 3 4 5 6 7 8 9 10 u
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Solution 10 may be considered. The details of the investment
strategy, including the investment cost, can be seen ireabl

If the hydrogen production cost is calculated for all sam-
ples, a cost distribution is generated. Figure 5 shows a his-
togram of the cost distribution for solution 3. The distrib-
ution shows only a relatively small variance. A calculation Scenarios 2 and 3, it is found that hydrogen production cost
of the cost for all solutions indicates a decrease in redativ will most likely increase. The flexibility index in Figure 7
variance (details omitted), i.e. an /z, for lower production ~ shows that some solutions result in considerably higher hy-
cost. Since a high variance indicates a high uncertaingy, th drogen production cost, e.g. Solution 6, while others dg not
variance does not conflict with the hydrogen production.cost e.g. Solution 1. Note that a positive value indicates a lower
This dependence is typical for all scenarios. cost for the passive scenarios and vice versa. The solutions

In Figure 6, which shows hydrogen versus hythane produc-are no longer part of the Pareto-optimal front since theg-ori
tion cost, a strong non-linear correlation with a minimum fo inate from the solution for Scenario 1. However, the origina
Solution 35 can be noticed. The non-linearity is most eviden extreme Solutions 1 and 2 will still be the extreme ones.
for the region left of this minimum. These points correspond
to solutions to the left of Solution 35 in Figure 4. The lowest
hydrogen production cost, represented by Solution 1zesli
no hythane and is therefore not shown in Figure 6.

Each solution and sample corresponds to one trajectory ofThe second scenario focuses on hydrogen cars, with primaril
the state variable;,. Given the state variable and the refu- combustion engines in the beginning and fuel cells towards
eling flows X, and X}, all other flows can be calculated the end of the 20-year time period. No hythane is used in this
from Egs. (7). When these flows are calculated for Solution scenario.

3, agood utilisation of equipment is found for most of the 100  In essence, the production cost versus hydrogen unsatisfied
samples, and this is verified by the small variance in produc-demand curve resembles that of Scenario 1. Figure 8 shows
tion cost in Figure 5. that almost zero unsatisfied demand can be maintained down

If the optimal solutions for Scenario 1 are calculated using to a production cost of around $6/kg, below which the amount

Figure 7: Hydrogen cost versus hydrogen flexibility for Sce-
nario 1.

5.2 Scenario 2: Hydrogen combustion engine
cars



) 10° Scenario 2 6 Discussion and conclusion
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£ . 150 E; stochastic optimization in order to find investment straggeg
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3 N eling station. The resulting cost of hydrogen and hythaee ar

£ st 1% g 2-6 USD/kg and 1-1.5 USD/kg respectively, depending on the

c A 1% 5 preferences concerning unsatisfied demand, flexibility etc

g {a0 § The results from this study can be used as decision support

2 49 1o © when planning combined hydrogen and hythane refueling sta-

Z ol - Lo § tions. Not only the production cost and unsatisfied demand

g ) 2 for the present scenario are important, but also the flexibil

Y - 10 § ity of the solution to unforeseen events and developments. |

g . = y pments.
T TP e AT e TaTans L addition, there are other performance measures such as vari

Hydrogen production cost [USD/kg] ance and the comparison between hydrogen and hythane that
should be taken into account. The selected solution is &matt
Figure 8: The resulting Pareto-front when optimisitigior of preference.
Scenario 2. The problem of finding investment strategies involves a
considerable amount of information, and therefore agdeega
measures have been defined for flexibility.

As observed from the connection between production cost
and unsatisfied demand for all scenarios, these two measures
are in conflict. One reason for this is the stochastic demand
curve which makes it unrealistic to achieve zero unsatisfied
demand. This is so since, occasionally, a larger amount of
vehicles will come to the station than it can serve, which is
probably close to what would be observed in reality. Other
reasons for this conflict in measures are the technology de-
velopment reduction in purchase price (see Eq. (2)) and the
discounted costs (see Eq. (3)). Since it is likely that it i
cheaper to build and run the refueling station in the futtive,
optimization tends to prefer future solutions to presergson
An evenly distributed cost will be discounted to 0.4466 & th
original value, so the discount effect is not negligible.

Improvements can be made to the scenario data in Sec-
tion 2.1. It may be unrealistic having all buses refuelling i
Figure 9: The resulting Pareto-front when optimisitigor the morning. Instead, a slow filling during night time might
Scenario 3. be considered. Also the 24-hour car refueling curve, which

assumes a constant filling frequency throughout the day, may
be adjusted to a more realistic setting.
of unsatisfied demand starts to rise. A key to successful investment planning is the minimiza-

The flexibility of the solutions for scenario 2 is in general tion oLthe (lj_r]:fcertalr}ty of future d?Ve'OPT]‘e”tS- For tlh'g rea
lower than for other solutions, which is evident when the pas son, tbree : e:jeniNl_Jt#re scer:warlos, V\."t thO samples eac
sive Scenarios 1 and 3 are used. The production cost fortheSE"’“’e een used. Within each scenario the uncertainties are

passive scenarios is at least double that obtained whergthe a KEPt at minimum given the strategic parameters, by taking
tive Scenario 2 is used. all samples into account. The strategic parameters can eas-

ily be changed for other cases. For each solution, the sffect
are easy to quantify should another scenario become reality
However, the S-curve (Eq. (1)) has still been used for estima
ing the (uncertain) number of produced units. These numbers
are taken in a global perspective, which may make them less
_ _ sensitive.
In the third scenario, hydrogen fuel cell powered scoot&@s a |, this study, linear scaling of equipment cost to usage time
in focus in the beginning, and later fuel cell driven cars. No i ysed. Another option, often used in the literature [26],
hythane is used in this scenario. would be to use salvage value or terminal cost. Given that the
The production cost versus unsatisfied demand curve insalvage value can be defined arbitrarily, these two appesach
Figure 9 reveals a slightly more expensive production thancan be considered identical.
in the previous cases. This is even more obvious when the In the optimisations presented here, the investment strat-
solutions for Scenario 3 are applied to Scenario 1 and 2. egy is set prior to the calculations. Another option would be
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to define control policies that use system information for de
cisions, i.e. a fully closed-loop. Such a strategy would be
able to incorporate not only investments but also a quantita
tive demand satisfaction calculation. At present, the oaé}

feedback loop has been implemented for the hydrogen storage[6]

level.
An increase in the number of solutions will give better res-

olution for the Pareto curve. On the other hand, a larger pop- [7]

ulation will be needed in the GA, which in turn will increase
the calculation time. At present, simulation of one scemari
sample takes about 0.25 s, giving a total of 75 s per inditidua
and hence 1 h 40 min. for a population of 80 individuals. By
aggregating calculated measures and coding more of the algo
rithm in a low-level language, the simulation time can proba
bly be shortened considerably. If this is done, the resmhuti
can be enhanced.

It should also be noted that, as for all heuristic methods, |
convergence cannot be guaranteed. Instead, one has & settl

for a solution which is good enough and preferably bettan tha
any other known solution.

To conclude, it has been found that it is possible to op- [10]

timise the hydrogen production cost for a combined hydro-
gen and hythane refueling station, and that the resultistsco
lies between 2-6 USD/kg for hydrogen and 1-1.5 USD/kg for

hythane. The production cost and the amount of unsatisfied11]

demand constitute conflicting objectives so that, for exam-
ple, if the total hydrogen and hythane demand is to be sat-
isfied, the production cost of hydrogen will be unrealidtica
high. However, an intermediate realistic solution can lmtb

along the curve of cost versus unsatisfied demand. In aII[
cases, the lowest production cost for hydrogen and hythane

is achieved by satisfying the hydrogen demand first and then
the hythane demand.
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